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PREFACE iii

PREFACE

Our goal in writing this book is to expose the inner workings of the modern
digital computer at a level that demystifies what goes on inside the machine.
The only prerequisite to Principles of Computer Architecture is a working
knowledge of a high-level programming language. The breadth of material has
been chosen to cover topics normally found in a first course in computer
architecture or computer organization. The breadth and depth of coverage
have been steered to also place the beginning student on a solid track for con-
tinuing studies in computer related disciplines.

In creating a computer architecture textbook, the technical issues fall into
place fairly naturally, and it is the organizational issues that bring important
features to fruition. Some of the features that received the greatest attention in
Principles of Computer Architecture include the choice of the instruction set
architecture (ISA), the use of case studies, and a voluminous use of examples
and exercises.

THE INSTRUCTIONAL ISA

A textbook that covers assembly language programming needs to deal with the
issue of which instruction set architecture (ISA) to use: a model architecture,
or one of the many commercial architectures. The choice impacts the instruc-
tor, who may want an ISA that matches a local platform used for student
assembly language programming assignments. To complicate matters, the
local platform may change from semester to semester: yesterday the MIPS,
today the Pentium, tomorrow the SPARC. The authors opted for having it
both ways by adopting a SPARC-subset for an instructional I1SA, called “A
RISC Computer” (ARC), which is carried through the mainstream of the
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book, and complementing it with platform-independent software tools that sim-
ulate the ARC ISA as well as the MIPS and x86 (Pentium) ISAs.

CASE STUDIES, EXAMPLES, AND EXERCISES

Every chapter contains at least one case study as a means for introducing the stu-
dent to “real world” examples of the topic being covered. This places the topic in
perspective, and in the authors’ opinion, lends an air of reality and interest to the
material.

We incorporated as many examples and exercises as we practically could, cover-
ing the most significant points in the text. Additional examples and solutions are
available on-line, at the companion Web site (see below.)

Our presentation views a computer as an integrated system. If we were to choose
a subtitle for the book, it might be “An Integrated Approach,” which reflects high
level threads that tie the material together. Each topic is covered in the context of
the entire machine of which it is a part, and with a perspective as to how the
implementation affects behavior. For example, the finite precision of binary
numbers is brought to bear in observing how many 1’s can be added to a floating
point number before the error in the representation exceeds 1. (This is one rea-
son why floating point numbers should be avoided as loop control variables.) As
another example, subroutine linkage is covered with the expectation that the
reader may someday be faced with writing C or Java programs that make calls to
routines in other high level languages, such as Fortran.

As yet another example of the integrated approach, error detection and correc-
tion are covered in the context of mass storage and transmission, with the expec-
tation that the reader may tackle networking applications (where bit errors and
data packet losses are a fact of life) or may have to deal with an unreliable storage
medium such as a compact disk read-only memory (CD-ROM.)

Computer architecture impacts many of the ordinary things that computer pro-
fessionals do, and the emphasis on taking an integrated approach addresses the
great diversity of areas in which a computer professional should be educated.
This emphasis reflects a transition that is taking place in many computer related
undergraduate curricula. As computer architectures become more complex they
must be treated at correspondingly higher levels of abstraction, and in some ways



they also become more technology-dependent. For this reason, the major portion
of the text deals with a high level look at computer architecture, while the appen-
dices and case studies cover lower level, technology-dependent aspects.

THE CHAPTERS

Chapter 1: Introduction introduces the textbook with a brief history of com-
puter architecture, and progresses through the basic parts of a computer, leaving
the student with a high level view of a computer system. The conventional von
Neumann model of a digital computer is introduced, followed by the System Bus
Model, followed by a topical exploration of a typical computer. This chapter lays
the groundwork for the more detailed discussions in later chapters.

Chapter 2: Data Representation covers basic data representation. One’s comple-
ment, two’s complement, signed magnitude and excess representations of signed
numbers are covered. Binary coded decimal (BCD) representation, which is fre-
quently found in calculators, is also covered in Chapter 2. The representation of
floating point numbers is covered, including the IEEE 754 floating point stan-
dard for binary numbers. The ASCII, EBCDIC, and Unicode character repre-
sentations are also covered.

Chapter 3: Arithmetic covers computer arithmetic and advanced data represen-
tations. Fixed point addition, subtraction, multiplication, and division are cov-
ered for signed and unsigned integers. Nine’s complement and ten’s complement
representations, used in BCD arithmetic, are covered. BCD and floating point
arithmetic are also covered. High performance methods such as carry-lookahead
addition, array multiplication, and division by functional iteration are covered. A
short discussion of residue arithmetic introduces an unconventional high perfor-
mance approach.

Chapter 4: The Instruction Set Architecture introduces the basic architectural
components involved in program execution. Machine language and the
fetch-execute cycle are covered. The organization of a central processing unit is
detailed, and the role of the system bus in interconnecting the arithmetic/logic
unit, registers, memory, input and output units, and the control unit are dis-
cussed.

Assembly language programming is covered in the context of the instructional
ARC (A RISC Computer), which is loosely based on the commercial SPARC
architecture. The instruction names, instruction formats, data formats, and the
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suggested assembly language syntax for the SPARC have been retained in the
ARC, but a number of simplifications have been made. Only 15 SPARC instruc-
tions are used for most of the chapter, and only a 32-bit unsigned integer data
type is allowed initially. Instruction formats are covered, as well as addressing
modes. Subroutine linkage is explored in a number of styles, with a detailed dis-
cussion of parameter passing using a stack.

Chapter 5: Languages and the Machine connects the programmer’s view of a
computer system with the architecture of the underlying machine. System soft-
ware issues are covered with the goal of making the low level machine visible to a
programmer. The chapter starts with an explanation of the compilation process,
first covering the steps involved in compilation, and then focusing on code gen-
eration. The assembly process is described for a two-pass assembler, and examples
are given of generating symbol tables. Linking, loading, and macros are also cov-
ered.

Chapter 6: Datapath and Control provides a step-by-step analysis of a datapath
and a control unit. Two methods of control are discussed: microprogrammed and
hardwired. The instructor may adopt one method and omit the other, or cover
both methods as time permits. The example microprogrammed and hardwired
control units implement the ARC subset of the SPARC assembly language intro-
duced in Chapter 4.

Chapter 7: Memory covers computer memory beginning with the organization
of a basic random access memory, and moving to advanced concepts such as
cache and virtual memory. The traditional direct, associative, and set associative
cache mapping schemes are covered, as well as multilevel caches. Issues such as
overlays, replacement policies, segmentation, fragmentation, and the translation
lookaside buffer are also discussed.

Chapter 8: Input and Output covers bus communication and bus access meth-
ods. Bus-to-bus bridging is also described. The chapter covers various 1/O
devices commonly in use such as disks, keyboards, printers, and displays.

Chapter 9: Communication covers network architectures, focusing on modems,
local area networks, and wide area networks. The emphasis is primarily on net-
work architecture, with accessible discussions of protocols that spotlight key fea-
tures of network architecture. Error detection and correction are covered in
depth. The TCP/IP protocol suite is introduced in the context of the Internet.




Chapter 10: Trends in Computer Architecture covers advanced architectural
features that have either emerged or taken new forms in recent years. The early
part of the chapter covers the motivation for reduced instruction set computer
(RISC) processors, and the architectural implications of RISC. The latter portion
of the chapter covers multiple instruction issue machines, and very large instruc-
tion word (VLIW) machines. A case study makes RISC features visible to the
programmer in a step-by-step analysis of a C compiler-generated SPARC pro-
gram, with explanations of the stack frame usage, register usage, and pipelining.
The chapter covers parallel and distributed architectures, and interconnection
networks used in parallel and distributed processing.

Appendix A: Digital Logic covers combinational logic and sequential logic, and
provides a foundation for understanding the logical makeup of components dis-
cussed in the rest of the book. Appendix A begins with a description of truth
tables, Boolean algebra, and logic equations. The synthesis of combinational
logic circuits is described, and a number of examples are explored. Medium scale
integration (MSI) components such as multiplexers and decoders are discussed,
and examples of synthesizing circuits using MSI components are explored.

Synchronous logic is also covered in Appendix A, starting with an introduction
to timing issues that relate to flip-flops. The synthesis of synchronous logic cir-
cuits is covered with respect to state transition diagrams, state tables, and syn-
chronous logic designs.

Appendix A can be paired with Appendix B: Reduction of Digital Logic which
covers reduction for combinational and sequential logic. Minimization is covered
using algebraic reduction, Karnaugh maps, and the tabular (Quine-McCluskey)
method for single and multiple functions. State reduction and state assignment
are also covered.

CHAPTER ORDERING

The order of chapters is created so that the chapters can be taught in numerical
order, but an instructor can modify the ordering to suit a particular curriculum
and syllabus. Figure P-1 shows prerequisite relationships among the chapters.
Special considerations regarding chapter sequencing are detailed below.

Chapter 2 (Data Representation) should be covered prior to Chapter 3 (Arith-
metic), which has the greatest need for it. Appendix A (Digital Logic) and
Appendix B (Reduction of Digital Logic) can be omitted if digital logic is cov-
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Figure P-1  Prerequisite relationships among chapters.

ered earlier in the curriculum, but if the material is not covered, then the struc-
ture of some components (such as an arithmetic logic unit or a register) will
remain a mystery in later chapters if at least Appendix A is not covered earlier
than Chapter 3.

Chapter 4 (The Instruction Set Architecture) and Chapter 5 (Languages and the
Machine) appear in the early half of the book for two reasons: (1) they introduce
the student to the workings of a computer at a fairly high level, which allows for
a top-down approach to the study of computer architecture; and (2) it is impor-
tant to get started on assembly language programming early if hands-on pro-
gramming is part of the course.

The material in Chapter 10 (Trends in Computer Architecture) typically appears
in graduate level architecture courses, and should therefore be covered only as
time permits, after the material in the earlier chapters is covered.



A companion Web site
http://ww. cs. rutgers. edu/ ~nur docca/ POCA

pairs with this textbook. The companion Web site contains a wealth of support-
ing material such as software, Powerpoint slides, practice problems with solu-
tions, and errata. Solutions for all of the problems in the book and sample exam
problems with solutions are also available for textbook adopters. (Contact your
Prentice Hall representative if you are an instructor and need access to this infor-
mation.)

SOFTWARE TOOLS

We provide an assembler and a simulator for the ARC, and subsets of the assem-
bly languages of the MIPS and x86 (Pentium) processors. Written as Java appli-
cations for easy portability, these assemblers and simulators are available via
download from the companion Web site.

SLIDES AND FIGURES

All of the figures and tables in Principles of Computer Architecture have been
included in a Powerpoint slide presentation. If you do not have access to Power-
point, the slide presentation is also available in Adobe Acrobat format, which
uses a free-of-charge downloadable reader program. The individual figures are
also available as separate PostScript files.

PRACTICE PROBLEMS AND SOLUTIONS

The practice problems and solutions have been fully class tested; there is no pass-
word protection. The sample exam problems (which also include solutions) and
the solutions to problems in POCA are available to instructors who adopt the
book. (Contact your Prentice Hall representative for access to this area of the
Web site. We only ask that you do not place this material on a Web site some-
place else.)

IF YOU FIND AN ERROR

In spite of the best of the best efforts of the authors, editors, reviewers, and class
testers, this book undoubtedly contains errors. Check on-line at
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http://ww. cs. rut gers. edu/ ~mur docca/ POCA to see if it has been cat-
alogued. You can report errors to pocabugs@s. r ut ger s. edu. Please men-
tion the chapter number where the error occurs in the Subj ect : header.

We did not create this book entirely on our own, and we gratefully acknowledge
the support of many people for their influence in the preparation of the book
and on our thinking in general. We first wish to thank our Acquisitions Editors:
Thomas Robbins and Paul Becker, who had the foresight and vision to guide this
book and its supporting materials through to completion. Donald Chiarulli was
an important influence on an early version of the book, which was class-tested at
Rutgers University and the University of Pittsburgh. Saul Levy, Donald Smith,
Vidyadhar Phalke, Ajay Bakre, Jinsong Huang, and Srimat Chakradhar helped
test the material in courses at Rutgers, and provided some of the text, problems,
and valuable explanations. Brian Davison and Shridhar Venkatanarisam worked
on an early version of the solutions and provided many helpful comments. Irving
Rabinowitz provided a number of problem sets. Larry Greenfield provided
advice from the perspective of a student who is new to the subject, and is cred-
ited with helping in the organization of Chapter 2. Blair Gabett Bizjak is credited
with providing the framework for much of the LAN material. Ann Yasuhara pro-
vided text on Turing’s contributions to computer science. William Waite pro-
vided a number of the assembly language examples.

The reviewers, whose names we do not know, are gratefully acknowledged for
their help in steering the project. Ann Root did a superb job on the development
of the supporting ARCSim tools which are available on the companion Web site.
The Rutgers University and University of Colorado student populations pro-
vided important proving grounds for the material, and we are grateful for their
patience and recommendations while the book was under development.

I (MJIM) was encouraged by my parents Dolores and Nicholas Murdocca, my sis-
ter Marybeth, and my brother Mark. My wife Ellen and my daughters Alexandra
and Nicole have been an endless source of encouragement and inspiration. | do
not think I could have found the energy for such an undertaking without all of
their support.

I (VPH) wish to acknowledge the support of my wife Gretchen, who was exceed-
ingly patient and encouraging throughout the process of writing this book.
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There are surely other people and institutions who have contributed to this
book, either directly or indirectly, whose names we have inadvertently omitted.
To those people and institutions we offer our tacit appreciation and apologize for
having omitted explicit recognition here.

Miles J. Murdocca
Rutgers University
murdocca@cs.rutgers.edu

Vincent P. Heuring
University of Colorado at Boulder
heuring@colorado.edu
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CHAPTER 1  INTRODUCTION 1

INTRODUCTION

Computer architecture deals with the functional behavior of a computer system
as viewed by a programmer. This view includes aspects such as the sizes of data
types (e.g. using 16 binary digits to represent an integer), and the types of opera-
tions that are supported (like addition, subtraction, and subroutine calls). Com-
puter organization deals with structural relationships that are not visible to the
programmer, such as interfaces to peripheral devices, the clock frequency, and
the technology used for the memory. This textbook deals with both architecture
and organization, with the term “architecture” referring broadly to both architec-
ture and organization.

There is a concept of levels in computer architecture. The basic idea is that there
are many levels, or views, at which a computer can be considered, from the high-
est level, where the user is running programs, or using the computer, to the low-
est level, consisting of transistors and wires. Between the high and low levels are a
number of intermediate levels. Before we discuss those levels we will present a
brief history of computing in order to gain a perspective on how it all came
about.

Mechanical devices for controlling complex operations have been in existence
since at least the 1500’s, when rotating pegged cylinders were used in music
boxes much as they are today. Machines that perform calculations, as opposed to
simply repeating a predetermined melody, came in the next century.

Blaise Pascal (1623 — 1662) developed a mechanical calculator to help in his
father’s tax work. The Pascal calculator “Pascaline” contains eight dials that con-
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nect to a drum (Figure 1-1), with an innovative linkage that causes a dial to

Figure 1-1 Pascal’s calculating machine (Reproduced from an IBM Archives photograph.)

rotate one notch when a carry is produced from a dial in a lower position. A win-
dow is placed over the dial to allow its position to be observed, much like the
odometer in a car except that the dials are positioned horizontally, like a rotary
telephone dial. Some of Pascal’s adding machines, which he started to build in
1642, still exist today. It would not be until the 1800, however, until someone
would put the concepts of mechanical control and mechanical calculation
together into a machine that we recognize today as having the basic parts of a
digital computer. That person was Charles Babbage.

Charles Babbage (1791 — 1871) is sometimes referred to as the grandfather of the
computer, rather than the father of the computer, because he never built a practi-
cal version of the machines he designed. Babbage lived in England at a time
when mathematical tables were used in navigation and scientific work. The tables
were computed manually, and as a result, they contained numerous errors. Frus-
trated by the inaccuracies, Babbage set out to create a machine that would com-
pute tables by simply setting and turning gears. The machine he designed could
even produce a plate to be used by a printer, thus eliminating errors that might
be introduced by a typesetter.

Babbage’s machines had a means for reading input data, storing data, performing
calculations, producing output data, and automatically controlling the operation
of the machine. These are basic functions that are found in nearly every modern
computer. Babbage created a small prototype of his difference engine, which
evaluates polynomials using the method of finite differences. The success of the



CHAPTER 1

difference engine concept gained him government support for the much larger
analytical engine, which was a more sophisticated machine that had a mecha-
nism for branching (making decisions) and a means for programming, using
punched cards in the manner of what is known as the Jacquard pattern-weav-
ing loom.

The analytical engine was designed, but was never built by Babbage because the
mechanical tolerances required by the design could not be met with the technol-
ogy of the day. A version of Babbage’s difference engine was actually built by the
Science Museum in London in 1991, and can still be viewed today.

It took over a century, until the start of World War 11, before the next major
thrust in computing was initiated. In England, German U-boat submarines were
inflicting heavy damage on Allied shipping. The U-boats received communica-
tions from their bases in Germany using an encryption code, which was imple-
mented by a machine made by Siemens AG known as ENIGMA.

The process of encrypting information had been known for a long time, and
even the United States president Thomas Jefferson (1743 — 1826) designed a
forerunner of ENIGMA, though he did not construct the machine. The process
of decoding encrypted data was a much harder task. It was this problem that
prompted the efforts of Alan Turing (1912 — 1954), and other scientists in
England in creating codebreaking machines. During World War |1, Turing was
the leading cryptographer in England and was among those who changed cryp-
tography from a subject for people who deciphered ancient languages to a subject
for mathematicians.

The Colossus was a successful codebreaking machine that came out of Bletchley
Park, England, where Turing worked. Vacuum tubes store the contents of a paper
tape that is fed into the machine, and computations take place among the vac-
uum tubes and a second tape that is fed into the machine. Programming is per-
formed with plugboards. Turing’s involvement in the various Collosi machine
versions remains obscure due to the secrecy that surrounds the project, but some
aspects of his work and his life can be seen in the Broadway play Breaking the
Code which was performed in London and New York in the late 1980'.

Around the same time as Turing’s efforts, J. Presper Eckert and John Mauchly set
out to create a machine that could be used to compute tables of ballistic trajecto-
ries for the U.S. Army. The result of the Eckert-Mauchly effort was the Elec-
tronic Numerical Integrator And Computer (ENIAC). The ENIAC consists of
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18,000 vacuum tubes, which make up the computing section of the machine.
Programming and data entry are performed by setting switches and changing
cables. There is no concept of a stored program, and there is no central memory
unit, but these are not serious limitations because all that the ENIAC needed to
do was to compute ballistic trajectories. Even though it did not become opera-
tional until 1946, after the War was over, it was considered quite a success, and
was used for nine years.

After the success of ENIAC, Eckert and Mauchly, who were at the Moore School
at the University of Pennsylvania, were joined by John von Neumann (1903 -
1957), who was at the Institute for Advanced Study at Princeton. Together, they
worked on the design of a stored program computer called the EDVAC. A con-
flict developed, however, and the Pennsylvania and Princeton groups split. The
concept of a stored program computer thrived, however, and a working model of
the stored program computer, the EDSAC, was constructed by Maurice Wilkes,
of Cambridge University, in 1947.

Conventional digital computers have a common form that is attributed to von
Neumann, although historians agree that the entire team was responsible for the
design. The von Neumann model consists of five major components as illus-
trated in Figure 1-2. The Input Unit provides instructions and data to the sys-

Memory
Unit

Arithmetic
Input Unit and Logic Output Unit
Unit (ALU)

A
Y

Control Unit

Figure 1-2  The von Neumann model of a digital computer. Thick arrows represent data paths. Thin
arrows represent control paths.
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tem, which are subsequently stored in the Memory Unit. The instructions and
data are processed by the Arithmetic and Logic Unit (ALU) under the direction
of the Control Unit. The results are sent to the Output Unit. The ALU and
control unit are frequently referred to collectively as the central processing unit
(CPU). Most commercial computers can be decomposed into these five basic
units.

The stored program is the most important aspect of the von Neumann model.
A program is stored in the computer’s memory along with the data to be pro-
cessed. Although we now take this for granted, prior to the development of the
stored program computer programs were stored on external media, such as plug-
boards (mentioned earlier) or punched cards or tape. In the stored program com-
puter the program can be manipulated as if it is data. This gave rise to compilers
and operating systems, and makes possible the great versatility of the modern
computer.

Although the von Neumann model prevails in modern computers, it has been
streamlined. Figure 1-3 shows the system bus model of a computer system. This

CPU
(ALY, Memory Input and
Registers, Output (1/0)
and Control)

» DataBus
=}
M
g Address Bus
&
Control Bus

Figure 1-3 The system bus model of a computer system. [Contributed by Donald Chiarulli, Univ. Pitts-
burgh.]

model partitions a computer system into three subunits; CPU, Memory, and
Input/Output (1/0). This refinement of the von Neumann model combines the
ALU and the control unit into one functional unit, the CPU. The input and out-
put units are also combined into a single 1/0 unit.

Most important to the system bus model, the communications among the com-
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ponents are by means of a shared pathway called the system bus, which is made
up of the data bus (which carries the information being transmitted), the
address bus (which identifies where the information is being sent), and the con-
trol bus (which describes aspects of how the information is being sent, and in
what manner). There is also a power bus for electrical power to the components,
which is not shown, but its presence is understood. Some architectures may also
have a separate 1/0 bus.

Physically, busses are made up of collections of wires that are grouped by func-
tion. A 32-bit data bus has 32 individual wires, each of which carries one bit of
data (as opposed to address or control information). In this sense, the system bus
is actually a group of individual busses classified by their function.

The data bus moves data among the system components. Some systems have sep-
arate data buses for moving information to and from the CPU, in which case
there is a data-in bus and a data-out bus. More often a single data bus moves
data in either direction, although never both directions at the same time.

If the bus is to be shared among communicating entities, then the entities must
have distinguished identities: addresses. In some computers all addresses are
assumed to be memory addresses whether they are in fact part of the computer’s
memory, or are actually I/O devices, while in others 1/O devices have separate
I/0O addresses. (This topic of 1/0O addresses is covered in more detail in Chapter
8, Input, Output, and Communication.)

A memory address, or location, identifies a memory location where data is
stored, similar to the way a postal address identifies the location where a recipient
receives and sends mail. During a memory read or write operation the address
bus contains the address of the memory location where the data is to be read
from or written to. Note that the terms “read” and “write” are with respect to the
CPU: the CPU reads data from memory and writes data into memory. If data is
to be read from memory then the data bus contains the value read from that
address in memory. If the data is to be written into memory then the data bus
contains the data value to be written into memory.

The control bus is somewhat more complex, and we defer discussion of this bus
to later chapters. For now the control bus can be thought of as coordinating
access to the data bus and to the address bus, and directing data to specific com-
ponents.
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As with any complex system, the computer can be viewed from a number of per-
spectives, or levels, from the highest “user” level to the lowest, transistor level.
Each of these levels represents an abstraction of the computer. Perhaps one of the
reasons for the enormous success of the digital computer is the extent to which
these levels of abstraction are separate, or independent from one another. This is
readily seen: a user who runs a word processing program on a computer needs to
know nothing about its programming. Likewise a programmer need not be con-
cerned with the logic gate structure inside the computer. One interesting way
that the separation of levels has been exploited is in the development of
upwardly-compatible machines.

UPWARD COMPATIBILITY

The invention of the transistor led to a rapid development of computer hard-
ware, and with this development came a problem of compatibility. Computer
users wanted to take advantage of the newest and fastest machines, but each new
computer model had a new architecture, and the old software would not run on
the new hardware. The hardware / software compatibility problem became so
serious that users often delayed purchasing a new machine because of the cost of
rewriting the software to run on the new hardware. When a new computer was
purchased, it would often sit unavailable to the target users for months while the
old software and data sets were converted to the new systems.

In a successful gamble that pitted compatibility against performance, IBM pio-
neered the concept of a “family of machines” with its 360 series. More capable
machines in the same family could run programs written for less capable
machines without modifications to those programs—upward compatibility.
Upward compatibility allows a user to upgrade to a faster, more capable machine
without rewriting the software that runs on the less capable model.

THE LEVELS

Figure 1-4 shows seven levels in the computer, from the user level down to the
transistor level. As we progress from the top level downward, the levels become
less “abstract” and more of the internal structure of the computer shows through.
We discuss these levels below.

INTRODUCTION 7



CHAPTER 1

INTRODUCTION

High Level | User Level: Application Programs |

| High Level Languages |

| Assembly Language / Machine Code |

| Microprogrammed / Hardwired Control |

| Functional Units (Memory, ALU, etc.) |

| Logic Gates |

Low Level Transistors and Wires

Figure 1-4  Levels of machines in the computer hierarchy.

User or Application-Program Level

We are most familiar with the user, or application program level of the computer.
At this level, the user interacts with the computer by running programs such as
word processors, spreadsheet programs, or games. Here the user sees the com-
puter through the programs that run on it, and little (if any) of its internal or
lower-level structure is visible.

High Level Language Level

Anyone who has programmed a computer in a high level language such as C,
Pascal, Fortran, or Java, has interacted with the computer at this level. Here, a
programmer sees only the language, and none of the low-level details of the
machine. At this level the programmer sees the data types and instructions of the
high-level language, but needs no knowledge of how those data types are actually
implemented in the machine. It is the role of the compiler to map data types and
instructions from the high-level language to the actual computer hardware. Pro-
grams written in a high-level language can be re-compiled for various machines
that will (hopefully) run the same and provide the same results regardless of
which machine on which they are compiled and run. We can say that programs
are compatible across machine types if written in a high-level language, and this
kind of compatibility is referred to as source code compatibility.
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Assembly Language/Machine Code Level

As pointed out above, the high-level language level really has little to do with the
machine on which the high-level language is translated. The compiler translates
the source code to the actual machine instructions, sometimes referred to as
machine language or machine code. High-level languages “cater” to the pro-
grammer by providing a certain set of presumably well-thought-out language
constructs and data types. Machine languages look “downward” in the hierarchy,
and thus cater to the needs of the lower level aspects of the machine design. As a
result, machine languages deal with hardware issues such as registers and the
transfer of data between them. In fact, many machine instructions can be
described in terms of the register transfers that they effect. The collection of
machine instructions for a given machine is referred to as the instruction set of
that machine.

Of course, the actual machine code is just a collection of 1's and 0’s, sometimes
referred to as machine binary code, or just binary code. As we might imagine,
programming with 1’s and 0 is tedious and error prone. As a result, one of the
first computer programs written was the assembler, which translates ordinary
language mnemonics such as MOVE Dat a, Acc, into their corresponding
machine language 1's and 0’s. This language, whose constructs bear a one-to-one
relationship to machine language, is known as assembly language.

As a result of the separation of levels, it is possible to have many different
machines that differ in the lower-level implementation but which have the same
instruction set, or sub- or supersets of that instruction set. This allowed IBM to
design a product line such as the IBM 360 series with guaranteed upward com-
patibility of machine code. Machine code running on the 360 Model 35 would
run unchanged on the 360 Model 50, should the customer wish to upgrade to
the more powerful machine. This kind of compatibility is known as “binary
compatibility,” because the binary code will run unchanged on the various family
members. This feature was responsible in large part for the great success of the
IBM 360 series of computers.

Intel Corporation has stressed binary compatibility in its family members. In
this case, binaries written for the original member of a family, such as the 8086,
will run unchanged on all subsequent family members, such as the 80186,
80286, 80386, 80486, and the most current family member, the Pentium pro-
cessor. Of course this does not address the fact that there are other computers
that present different instruction sets to the users, which makes it difficult to port
an installed base of software from one family of computers to another.

INTRODUCTION 9
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The Control Level

It is the control unit that effects the register transfers described above. It does so
by means of control signals that transfer the data from register to register, possi-
bly through a logic circuit that transforms it in some way. The control unit inter-
prets the machine instructions one by one, causing the specified register transfer
or other action to occur.

How it does this is of no need of concern to the assembly language programmer.
The Intel 80x86 family of processors presents the same behavioral view to an
assembly language programmer regardless of which processor in the family is
considered. This is because each future member of the family is designed to exe-
cute the original 8086 instructions in addition to any new instructions imple-
mented for that particular family member.

As Figure 1-4 indicates, there are several ways of implementing the control unit.
Probably the most popular way at the present time is by “hardwiring” the control
unit. This means that the control signals that effect the register transfers are gen-
erated from a block of digital logic components. Hardwired control units have
the advantages of speed and component count, but until recently were exceed-
ingly difficult to design and modify. (We will study this technique more fully in
Chapter 9.)

A somewhat slower but simpler approach is to implement the instructions as a
microprogram. A microprogram is actually a small program written in an even
lower-level language, and implemented in the hardware, whose job is to interpret
the machine-language instructions. This microprogram is referred to as firmware
because it spans both hardware and software. Firmware is executed by a micro-
controller, which executes the actual microinstructions. (We will also explore
microprogramming in Chapter 9.)

Functional Unit Level

The register transfers and other operations implemented by the control unit
move data in and out of “functional units,” so-called because they perform some
function that is important to the operation of the computer. Functional units
include internal CPU registers, the ALU, and the computer’s main memory.
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Logic Gates, Transistors, and Wires

The lowest levels at which any semblance of the computer’s higher-level func-
tioning is visible is at the logic gate and transistor levels. It is from logic gates
that the functional units are built, and from transistors that logic gates are built.
The logic gates implement the lowest-level logical operations upon which the
computer’s functioning depends. At the very lowest level, a computer consists of
electrical components such as transistors and wires, which make up the logic
gates, but at this level the functioning of the computer is lost in details of voltage,
current, signal propagation delays, quantum effects, and other low-level matters.

Interactions Between Levels

The distinctions within levels and between levels are frequently blurred. For
instance, a new computer architecture may contain floating point instructions in
a full-blown implementation, but a minimal implementation may have only
enough hardware for integer instructions. The floating point instructions are
trappedJr prior to execution and replaced with a sequence of machine language
instructions that imitate, or emulate the floating point instructions using the
existing integer instructions. This is the case for microprocessors that use
optional floating point coprocessors. Those without floating point coprocessors
emulate the floating point instructions by a series of floating point routines that
are implemented in the machine language of the microprocessor, and frequently
stored in a ROM, which is a read-only memory chip. The assembly language and
high level language view for both implementations is the same except for execu-
tion speed.

It is possible to take this emulation to the extreme of emulating the entire
instruction set of one computer on another computer. The software that does
this is known as an emulator, and was used by Apple Computer to maintain
binary code compatibility when they began employing Motorola PowerPC chips
in place of Motorola 68000 chips, which had an entirely different instruction set.

The high level language level and the firmware and functional unit levels can be
so intermixed that it is hard to identify what operation is happening at which
level. The value in stratifying a computer architecture into a hierarchy of levels is
not so much for the purpose of classification, which we just saw can be difficult
at times, but rather to simply give us some focus when we study these levels in

t. Traps are covered in Chapter 6.
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the chapters that follow.

The Programmer’s View—The Instruction Set Architecture

As described in the discussion of levels above, the assembly language programmer
is concerned with the assembly language and functional units of the machine.
This collection of instruction set and functional units is known as the instruc-
tion set architecture (ISA) of the machine.

The Computer Architect’s View

On the other hand, the computer architect views the system at all levels. The
architect that focuses on the design of a computer is invariably driven by perfor-
mance requirements and cost constraints. Performance may be specified by the
speed of program execution, the storage capacity of the machine, or a number of
other parameters. Cost may be reflected in monetary terms, or in size or weight,
or power consumption. The design proposed by a computer architect must
attempt to meet the performance goals while staying within the cost constraints.
This usually requires trade-offs between and among the levels of the machine.

Modern computers have evolved from the great behemoths of the 1950’ and
1960’s to the much smaller and more powerful computers that surround us
today. Even with all of the great advances in computer technology that have been
made in the past few decades, the five basic units of the von Neumann model are
still distinguishable in modern computers.

Figure 1-5 shows a typical configuration for a desktop computer. The input unit
is composed of the keyboard, through which a user enters data and commands.
A video monitor comprises the output unit, which displays the output in a
visual form. The ALU and the control unit are bundled into a single micropro-
cessor that serves as the CPU. The memory unit consists of individual memory
circuits, and also a hard disk unit, a diskette unit, and a CD-ROM (compact
disk - read only memory) device.

As we look deeper inside of the machine, we can see that the heart of the
machine is contained on a single motherboard, similar to the one shown in Fig-
ure 1-6. The motherboard contains integrated circuits (ICs), plug-in expansion
card slots, and the wires that interconnect the 1Cs and expansion card slots. The
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Figure 1-5 A desktop computer system.

input, output, memory, and ALU/control sections are highlighted as shown. (We
will cover motherboard internals in later chapters.)

1.7 Organization of the Book

We explore the inner workings of computers in the chapters that follow. Chapter
2 covers the representation of data, which provides background for all of the
chapters that follow. Chapter 3 covers methods for implementing computer
arithmetic. Chapters 4 and 5 cover the instruction set architecture, which serves
as a vehicle for understanding how the components of a computer interact.
Chapter 6 ties the earlier chapters together in the design and analysis of a control
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Figure 1-6 A Pentium Il based motherboard. [Source: TYAN Computer,
http://www.tyan.com.]

unit for the instruction set architecture. Chapter 7 covers the organization of
memory units, and memory management techniques. Chapter 8 covers input,
output, and communication. Chapter 9 covers advanced aspects of single-CPU
systems (which might have more than one processing unit). Chapter 10 covers
advanced aspects of multiple-CPU systems, such as parallel and distributed
architectures, and network architectures. Finally, in Appendices A and B, we look
into the design of digital logic circuits, which are the building blocks for the
basic components of a computer.

1.8 Case Study: What Happened to Supercomputers?

[Note from the authors: The following contribution comes from Web page
http://www.paralogos.com/DeadSuper created by Kevin D. Kissell at
kevink@acm.org. Kissell’s Web site lists dozens of supercomputing projects that
have gone by the wayside. One of the primary reasons for the near-extinction of



CHAPTER 1

supercomputers is that ordinary, everyday computers achieve a significant frac-
tion of supercomputing power at a price that the common person can afford.
The price-to-performance ratio for desktop computers is very favorable due to
low costs achieved through mass market sales. Supercomputers enjoy no such
mass markets, and continue to suffer very high price-to-performance ratios.

Following Kissell’s contribution is an excerpt from an Electrical Engineering
Times article that highlights the enormous investment in everyday microproces-
sor development, which helps maintain the favorable price-to-performance ratio
for low-cost desktop computers.]

1 o LY S B — W
Figure 1-7 The Manchester University Mark I, made operational on 21 June 1948. (Not to be con-
fused with the Harvard Mark |, donated to Harvard University by International Business Machines
in August, 1944.)

The Passing of a Golden Age?

From the construction of the first programmed computers until the mid 1990s,
there was always room in the computer industry for someone with a clever, if
sometimes challenging, idea on how to make a more powerful machine. Com-
puting became strategic during the Second World War, and remained so during
the Cold War that followed. High-performance computing is essential to any
modern nuclear weapons program, and a computer technology “race” was a logi-
cal corollary to the arms race. While powerful computers are of great value to a
number of other industrial sectors, such as petroleum, chemistry, medicine, aero-
nautical, automotive, and civil engineering, the role of governments, and partic-
ularly the national laboratories of the US government, as catalysts and incubators
for innovative computing technologies can hardly be overstated. Private industry
may buy more machines, but rarely do they risk buying those with single-digit
serial numbers. The passing of Soviet communism and the end of the Cold War
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brought us a generally safer and more prosperous world, but it removed the rai-
son d'etre for many merchants of performance-at-any-price.

Accompanying these geopolitical changes were some technological and economic
trends that spelled trouble for specialized producers of high-end computers.
Microprocessors began in the 1970s as devices whose main claim to fame was
that it was possible to put a stored-program computer on a single piece of silicon.
Competitive pressures, and the desire to generate sales by obsoleting last year’s
product, made for the doubling of microprocessor computing power every 18
months, Moore's celebrated “law.” Along the way, microprocessor designers bor-
rowed almost all the tricks that designers of mainframe and numerical supercom-
puters had used in the past: storage hierarchies, pipelining, multiple functional
units, multiprocessing, out-of-order execution, branch prediction, SIMD pro-
cessing, speculative and predicated execution. By the mid 1990s, research ideas
were going directly from simulation to implementation in microprocessors des-
tined for the desktops of the masses. Nevertheless, it must be noted that most of
the gains in raw performance achieved by microprocessors in the preceding
decade came, not from these advanced techniques of computer architecture, but
from the simple speedup of processor clocks and quantitative increase in proces-
sor resources made possible by advances in semiconductor technology. By 1998,
the CPU of a high-end Windows-based personal computer was running at a
higher clock rate than the top-of-the-line Cray Research supercomputer of 1994.

It is thus hardly surprising that the policy of the US national laboratories has
shifted from the acquisition of systems architected from the ground up to be
supercomputers to the deployment of large ensembles of mass-produced micro-
processor-based systems, with the ASCI project as the flagship of this activity. As
of this writing, it remains to be seen if these agglomerations will prove to be suf-
ficiently stable and usable for production work, but the preliminary results have
been at least satisfactory. The halcyon days of supercomputers based on exotic
technology and innovative architecture may well be over.

[.]

Kevin D. Kissell
kevink@acm.org
February, 1998

[Note from the authors: The following excerpt is taken from the Electronic Engi-



CHAPTER 1 INTRODUCTION 17

neering Times, source:
http://techweb.cmp.com/eet/news/98/994news/invest.html.]

Invest or die: Intel’s life on the edge

By Ron Wilson and Brian Fuller

SANTA CLARA, Calif. -- Wth about $600 nillion to punp
into venture conpanies this year, Intel Corp. has
joined the maj or | eagues of venture-capital firms. But
the unique inperative that drives the m croprocessor
giant to invest gives it influence disproportionate to
even this large sum For Intel, venture investnents
are not just a source of incone; they are a vital tool
inthe fight to survive.

Survival mght seem an odd preoccupation for the
worl d' s |argest sem conductor conpany. But Intel, in a
way all its own, lives hanging in the balance. For
every new generation of CPUs, Intel nust make huge
investments in process devel opment, in buildings and
in fabs-an i nvestnent too huge to | ose.

Gordon Mbore, Intel chairman emeritus, gave scale to
the wager. "An R&D fab today costs $400 million just
for the building. Then you put about $1 billion of
equiprment in it. That gets you a quarter-micron fab
for maybe 5,000 wafers per week, about the smallest
practical fab. For the next generation," More said,
"the mninmuminvestnent will be $2 billion, wth naybe
$3 billionto $4 billion for any sort of vol ume produc-
tion. No other industry has such a short life on such
huge i nvestnents. "

Mich of this money will be spent before there is a
proven need for the mcroprocessors the fab will pro-
duce. In essence, the entire $4 billion per fab is bet
on the proposition that the industry will absorb a
huge nunber of premumpriced CPUs that are only sone-
what faster than the currently available parts. If for
just one generation that didn't happen-if everyone
judged, say, that the Pentium Il was fast enough,
thank you-the results woul d be unthi nkabl e.

"M/ nightmare is to wake up sone day and not need any
nore conputing power," More said.
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m SUMMARY

m Further Reading

The history of computing is riddled with interesting personalities and mile-
stones. (Anderson, 1991) gives a short, readable account of both during the last
century. (Bashe et. al., 1986) give an interesting account of the IBM machines.
(Bromley, 1987) chronicles Babbage’s machines. (Ralston and Reilly, 1993) give
short biographies of the more celebrated personalities. (Randell, 1982) covers the
history of digital computers. A very readable Web based history of computers by
Michelle A. Hoyle can be found at http://www.interpac.net/~eingang/Lec-
ture/toc.html. (SciAm, 1993) covers a readable version of the method of finite
differences as it appears in Babbage’s machines, and the version of the analytical
difference engine created by the Science Museum in London.

(Tanenbaum, 1999) is one of a number of texts that popularizes the notion of
levels of machines.

Anderson, Harlan, Dedication address for the Digital Computer Laboratory at
the University of Illinois, April 17, 1991, as reprinted in IEEE Circuits and Sys-
tems: Society Newsletter, vol. 2, no. 1, pp. 3-6, (March 1991).

Bashe, Charles J., Lyle R. Johnson, John H. Palmer, and Emerson W. Pugh,
IBM’s Early Computers, The MIT Press, (1986).
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Bromley, A. G., “The Evolution of Babbage’s Calculating Engines,” Annals of the
History of Computing, 9, pp. 113-138, (1987).

Randell, B., The Origins of Digital Computers, 3/e, Springer-Verlag, (1982).

Ralston, A. and E. D. Reilly, eds., Encyclopedia of Computer Science, 3/e, van
Nostrand Reinhold, (1993).

Tanenbaum, A., Structured Computer Organization, 4/e, Prentice Hall, Engle-
wood Cliffs, New Jersey, (1999).

m PROBLEMS

Moore’s law, which is attributed to Intel founder Gordon Moore, states
that computing power doubles every 18 months for the same price. An unre-
lated observation is that floating point instructions are executed 100 times
faster in hardware than via emulation. Using Moore’s law as a guide, how long
will it take for computing power to improve to the point that floating point
instructions are emulated as quickly as their (earlier) hardware counterparts?
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DATA REPRESENTATION

In the early days of computing, there were common misconceptions about com-
puters. One misconception was that the computer was only a giant adding
machine performing arithmetic operations. Computers could do much more
than that, even in the early days. The other common misconception, in contra-
diction to the first, was that the computer could do “anything.” We now know
that there are indeed classes of problems that even the most powerful imaginable
computer finds intractable with the von Neumann model. The correct percep-
tion, of course, is somewhere between the two.

We are familiar with computer operations that are non-arithmetic: computer
graphics, digital audio, even the manipulation of the computer mouse. Regard-
less of what kind of information is being manipulated by the computer, the
information must be represented by patterns of 1's and 0’ (also known as
“on-off” codes). This immediately raises the question of how that information
should be described or represented in the machine—this is the data representa-
tion, or data encoding. Graphical images, digital audio, or mouse clicks must all
be encoded in a systematic, agreed-upon manner.

We might think of the decimal representation of information as the most natural
when we know it the best, but the use of on-off codes to represent information
predated the computer by many years, in the form of Morse code.

This chapter introduces several of the simplest and most important encodings:
the encoding of signed and unsigned fixed point numbers, real numbers (referred
to as floating point numbers in computer jargon), and the printing characters.
We shall see that in all cases there are multiple ways of encoding a given kind of
data, some useful in one context, some in another. We will also take an early look
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at computer arithmetic for the purpose of understanding some of the encoding
schemes, though we will defer details of computer arithmetic until Chapter 3.

In the process of developing a data representation for computing, a crucial issue
is deciding how much storage should be devoted to each data value. For example,
a computer architect may decide to treat integers as being 32 bits in size, and to
implement an ALU that supports arithmetic operations on those 32-bit values
that return 32 bit results. Some numbers can be too large to represent using 32
bits, however, and in other cases, the operands may fit into 32 bits, but the result
of a computation will not, creating an overflow condition, which is described in
Chapter 3. Thus we need to understand the limits imposed on the accuracy and
range of numeric calculations by the finite nature of the data representations. We
will investigate these limits in the next few sections.

In a fixed point number system, each humber has exactly the same number of
digits, and the “point” is always in the same place. Examples from the decimal
number system would be 0.23, 5.12, and 9.11. In these examples each number
has 3 digits, and the decimal point is located two places from the right. Examples
from the binary number system (in which each digit can take on only one of the
values: 0 or 1) would be 11.10, 01.10, and 00.11, where there are 4 binary digits
and the binary point is in the middle. An important difference between the way
that we represent fixed point numbers on paper and the way that we represent
them in the computer is that when fixed point numbers are represented in the
computer the binary point is not stored anywhere, but only assumed to be in a cer-
tain position. One could say that the binary point exists only in the mind of the
programmer.

We begin coverage of fixed point numbers by investigating the range and preci-
sion of fixed point numbers, using the decimal number system. We then take a
look at the nature of number bases, such as decimal and binary, and how to con-
vert between the bases. With this foundation, we then investigate several ways of
representing negative fixed point numbers, and take a look at simple arithmetic
operations that can be performed on them.

RANGE AND PRECISION IN FIXED POINT NUMBERS

A fixed point representation can be characterized by the range of expressible
numbers (that is, the distance between the largest and smallest numbers) and the
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precision (the distance between two adjacent numbers on a number line.) For
the fixed-point decimal example above, using three digits and the decimal point
placed two digits from the right, the range is from 0.00 to 9.99 inclusive of the
endpoints, denoted as [0.00, 9.99], the precision is .01, and the error is 1/2 of
the difference between two “adjoining” numbers, such as 5.01 and 5.02, which
have a difference of .01. The error is thus .01/2 = .005. That is, we can represent
any number within the range 0.00 to 9.99 to within .005 of its true or precise
value.

Notice how range and precision trade off: with the decimal point on the far
right, the range is [000, 999] and the precision is 1.0. With the decimal point at
the far left, the range is [.000, .999] and the precision is .001.

In either case, there are only 10° different decimal “objects,” ranging from 000 to
999 or from .000 to .999, and thus it is possible to represent only 1,000 different
items, regardless of how we apportion range and precision.

There is no reason why the range must begin with 0. A 2-digit decimal number
can have a range of [00,99] or a range of [-50, +49], or even a range of [-99, +0].
The representation of negative numbers is covered more fully in Section 2.2.6.

Range and precision are important issues in computer architecture because both
are finite in the implementation of the architecture, but are infinite in the real
world, and so the user must be aware of the limitations of trying to represent
external information in internal form.

THE ASSOCIATIVE LAW OF ALGEBRA DOES NOT ALWAYS HOLD
IN COMPUTERS

In early mathematics, we learned the associative law of algebra:
at(b+c)=(@+h)+c

As we will see, the associative law of algebra does not hold for fixed point num-
bers having a finite representation. Consider a 1-digit decimal fixed point repre-
sentation with the decimal point on the right, and a range of [-9, 9], witha =7,
b=4,and c=-3. Nowa+(b+¢)=7+(4+-3)=7+1=8.But(a+b)y+c=(7+
4) + -3 = 11 + -3, but 11 is outside the range of our number system! We have
overflow in an intermediate calculation, but the final result is within the number
system. This is every bit as bad because the final result will be wrong if an inter-
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mediate result is wrong.

Thus we can see by example that the associative law of algebra does not hold for
finite-length fixed point numbers. This is an unavoidable consequence of this
form of representation, and there is nothing practical to be done except to detect
overflow wherever it occurs, and either terminate the computation immediately
and notify the user of the condition, or, having detected the overflow, repeat the
computation with numbers of greater range. (The latter technique is seldom
used except in critical applications.)

RADIX NUMBER SYSTEMS

In this section, we learn how to work with numbers having arbitrary bases,
although we will focus on the bases most used in digital computers, such as base
2 (binary), and its close cousins base 8 (octal), and base 16 (hexadecimal.)

The base, or radix of a number system defines the range of possible values that a
digit may have. In the base 10 (decimal) number system, one of the 10 values: O,
1,2,3,4,5,6,7,8, 9 is used for each digit of a number. The most natural sys-
tem for representing numbers in a computer is base 2, in which data is repre-
sented as a collection of 1's and 0.

The general form for determining the decimal value of a number in a radix k
fixed point number system is shown below:

n-1 '
Value = Z b, k'

i=-m

The value of the digit in position i is given by b;. There are n digits to the left of
the radix point and there are m digits to the right of the radix point. This form of
a number, in which each position has an assigned weight, is referred to as a
weighted position code. Consider evaluating (541.25)4q, in which the subscript
10 represents the base. We have n =3, m =2, and k = 10:

5x10%+4x101+1x10%9+2x101+5x%x102 =

(500)10 + (40)10 + (1)10 + (2/10)19 + (5/100)19 = (541.25)19
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Now consider the base 2 number (1010.01), in whichn =4, m =2, and k = 2:

1x22+0x22+1x20+0x20+40x21471x272

(8)10* (0)10 + (2)10 * (0)10 + (0/2)19 + (1/4)19 (10.25)19
This suggests how to convert a number from an arbitrary base into a base 10
number using the polynomial method. The idea is to multiply each digit by the
weight assigned to its position (powers of two in this example) and then sum up
the terms to obtain the converted number. Although conversions can be made
among all of the bases in this way, some bases pose special problems, as we will
see in the next section.

Note: in these weighted number systems we define the bit that carries the most
weight as the most significant bit (MSB), and the bit that carries the least
weight as the least significant bit (LSB). Conventionally the MSB is the left-
most bit and the LSB the rightmost bit.

CONVERSIONS AMONG RADICES

In the previous section, we saw an example of how a base 2 number can be con-
verted into a base 10 number. A conversion in the reverse direction is more
involved. The easiest way to convert fixed point numbers containing both integer
and fractional parts is to convert each part separately. Consider converting
(23.375)1( to base 2. We begin by separating the number into its integer and
fractional parts:

(23375)10 = (23)10 + (375)10

Converting the Integer Part of a Fixed Point Number—The Remainder Method

As suggested in the previous section, the general polynomial form for represent-
ing a binary integer is:

i-1

bixzi+bi_lx2 +...+b1x21+b0><20
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If we divide the integer by 2, then we will obtain:

bixzi_1+bi_lx2i_2+ +bl><20

with a remainder of by. As a result of dividing the original integer by 2, we dis-
cover the value of the first binary coefficient by. We can repeat this process on the
remaining polynomial and determine the value of b;. We can continue iterating
the process on the remaining polynomial and thus obtain all of the b;. This pro-
cess forms the basis of the remainder method of converting integers between
bases.

We now apply the remainder method to convert (23),q to base 2. As shown in
Figure 2-1, the integer is initially divided by 2, which leaves a remainder of O or

Integer Remainder

232 = \11 1 <«— Least significant bit
11/2 = 5 1

*—I

52 = 2 1

*—I

22 = 1 0

*—I

172 = 0 1 <«— Most significant bit

(23)19 = (10111),

Figure 2-1 A conversion from a base 10 integer to a base 2 integer using the remainder method.

1. For this case, 23/2 produces a quotient of 11 and a remainder of 1. The first
remainder is the least significant binary digit (bit) of the converted number (the
rightmost bit). In the next step 11 is divided by 2, which creates a quotient of 5
and a remainder of 1. Next, 5 is divided by 2, which creates a quotient of 2 and a
remainder of 1. The process continues until we are left with a quotient of 0. If we
continue the process after obtaining a quotient of 0, we will only obtain 0's for
the quotient and remainder, which will not change the value of the converted
number. The remainders are collected into a base 2 number in the order shown
in Figure 2-1 to produce the result (23);9 = (10111),. In general, we can convert
any base 10 integer to any other base by simply dividing the integer by the base
to which we are converting.
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We can check the result by converting it from base 2 back to base 10 using the
polynomial method:

(10111), =1x2%+0x28+1x22+1x2+1x20
=16+0+4+2+1

=(23)10

At this point, we have converted the integer portion of (23.375),q into base 2.

Converting the Fractional Part of a Fixed Point Number—The Multiplication
Method

The conversion of the fractional portion can be accomplished by successively
multiplying the fraction by 2 as described below.

A binary fraction is represented in the general form:

by X2 Hb X204 b x 270+ .,

If we multiply the fraction by 2, then we will obtain:

b_l+b_2><2_1+b_3x2_2+

We thus discover the coefficient b_;. If we iterate this process on the remaining
fraction, then we will obtain successive b;. This process forms the basis of the
multiplication method of converting fractions between bases. For the example
used here (Figure 2-2), the initial fraction (.375)1g is less than 1. If we multiply it
by 2, then the resulting number will be less than 2. The digit to the left of the
radix point will then be 0 or 1. This is the first digit to the right of the radix point
in the converted base 2 number, as shown in the figure. We repeat the process on
the fractional portion until we are either left with a fraction of 0, at which point
only trailing O’s are created by additional iterations, or we have reached the limit
of precision used in our representation. The digits are collected and the result is
obtained: (.375)1g = (.011),.

For this process, the multiplier is the same as the target base. The multiplier is 2
here, but if we wanted to make a conversion to another base, such as 3, then we
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v Most significant bit

375 x 2 = 0.75

I
\
.75 X 2 = 15

I
Y
5 X 2 = 10

Least significant bit
(:375)10 = (.011),

Figure 2-2 A conversion from a base 10 fraction to a base 2 fraction using the multiplication meth-
od.

would use a multiplier of 3.1

We again check the result of the conversion by converting from base 2 back to
base 10 using the polynomial method as shown below:

(011),=0x271+1x272+1x273=0+1/4 +1/8 = (.375)y,.

We now combine the integer and fractional portions of the number and obtain
the final result:

(23.375)10 = (10111.011),.

Non Terminating Fractions

Although this method of conversion will work among all bases, some precision
can be lost in the process. For example, not all terminating base 10 fractions have
a terminating base 2 form. Consider converting (.2),¢ to base 2 as shown in Fig-
ure 2-3. In the last row of the conversion, the fraction .2 reappears, and the pro-
cess repeats ad infinitum. As to why this can happen, consider that any
non-repeating base 2 fraction can be represented as i/2K for some integers i and k.
(Repeating fractions in base 2 cannot be so represented.) Algebraically,

i/2K = ix5K/(2kx5K) = ix5K/10K = /10K

1. Alternatively, we can use the base 10 number system and also avoid the conversion if we
retain a base 2 representation, in which combinations of 1’s and 0’s represent the base 10 digits.
This is known as binary coded decimal (BCD), which we will explore later in the chapter.
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2 x 2 = 04
I

]

4 x 2 = 08
|

]

8 x 2 = 16
|

Y

6 x 2 = 12
|

]

2 x 2 = 04

Figure 2-3 A terminating base 10 fraction that does not have a terminating base 2 form.

where J Is the integer 1x5™. The fraction is thus non-repeating in base 10. This
hinges on the fact that only non-repeating fractions in base b can be represented
as i/bX for some integers i and k. The condition that must be satisfied for a
non-repeating base 10 fraction to have an equivalent non-repeating base 2 frac-
tion is:

i/10K = i/(5%x2X) = jr2k

where j = i/5%, and 5% must be a factor of i. For one digit decimal fractions, only
(.0)10 and (.5)1¢ are non-repeating in base 2 (20% of the possible fractions); for
two digit decimal fractions, only (.00)19, (.25)19, (.50)10, and (.75);q are
non-repeating (4% of the possible fractions); etc. There is a link between rela-
tively prime numbers and repeating fractions, which is helpful in understanding
why some terminating base 10 fractions do not have a terminating base 2 form.
(Knuth, 1981) provides some insight in this area.

Binary versus Decimal Representations

While most computers use base 2 for internal representation and arithmetic,
some calculators and business computers use an internal representation of base
10, and thus do not suffer from this representational problem. The motivation
for using base 10 in business computers is not entirely to avoid the terminating
fraction problem, however, but also to avoid the conversion process at the input
and output units which historically have taken a significant amount of time.
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Binary, Octal, and Hexadecimal Radix Representations

While binary numbers reflect the actual internal representation used in most
machines, they suffer from the disadvantage that numbers represented in base 2
tend to need more digits than numbers in other bases, (why?) and it is easy to
make errors when writing them because of the long strings of 1’s and 0s. We
mentioned earlier in the Chapter that base 8, octal radix, and base 16, hexadec-
imal radix, are related to base 2. This is due to the three radices all being divisi-
ble by 2, the smallest one. We show below that converting among the three bases
2, 8, and 16 is trivial, and there are significant practical advantages to represent-
ing numbers in these bases.

Binary numbers may be considerably wider than their base 10 equivalents. As a
notational convenience, we sometimes use larger bases than 2 that are even mul-
tiples of 2. Converting among bases 2, 8, or 16 is easier than converting to and
from base 10. The values used for the base 8 digits are familiar to us as base 10
digits, but for base 16 (hexadecimal) we need six more digits than are used in
base 10. The letters A, B, C, D, E, F or their lower-case equivalents are com-
monly used to represent the corresponding values (10, 11, 12, 13, 14, 15) in
hexadecimal. The digits commonly used for bases 2, 8, 10, and 16 are summa-
rized in Figure 2-4. In comparing the base 2 column with the base 8 and base 16

Binary Octal Decimal Hexadecimal
(base 2) (base 8) (base 10) (base 16)

0 0 0 0
1 1 1 1
10 2 2 2
11 3 3 3
100 4 4 4
101 5 5 5
110 6 6 6
111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 10 A
1011 13 11 B
1100 14 12 C
1101 15 13 D
1110 16 14 E
1111 17 15 F

Figure 2-4  Values for digits in the binary, octal, decimal, and hexadecimal number systems.

columns, we need three bits to represent each base 8 digit in binary, and we need
four bits to represent each base 16 digit in binary. In general, k bits are needed to
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represent each digit in base 2K, in which k is an integer, so base 23 = 8 uses three
bits and base 2% = 16 uses four bits.

In order to convert a base 2 number into a base 8 number, we partition the base
2 number into groups of three starting from the radix point, and pad the outer-
most groups with 0’s as needed to form triples. Then, we convert each triple to
the octal equivalent. For conversion from base 2 to base 16, we use groups of
four. Consider converting (10110), to base 8:

(10110), = (010); (110); = (2)g (6)g = (26)g

Notice that the leftmost two bits are padded with a 0 on the left in order to cre-
ate a full triplet.

Now consider converting (10110110), to base 16:
(10110110), = (1011), (0110), = (B)16 (6)16 = (B6)16
(Note that ‘B’ is a base 16 digit corresponding to 11,4. B is not a variable.)

The conversion methods can be used to convert a number from any base to any
other base, but it may not be very intuitive to convert something like (513.03)g
to base 7. As an aid in performing an unnatural conversion, we can convert to
the more familiar base 10 form as an intermediate step, and then continue the
conversion from base 10 to the target base. As a general rule, we use the polyno-
mial method when converting into base 10, and we use the remainder and multi-
plication methods when converting out of base 10.

AN EARLY LOOK AT COMPUTER ARITHMETIC

We will explore computer arithmetic in detail in Chapter 3, but for the moment,
we need to learn how to perform simple binary addition because it is used in rep-
resenting signed binary numbers. Binary addition is performed similar to the
way we perform decimal addition by hand, as illustrated in Figure 2-5. Two
binary numbers A and B are added from right to left, creating a sum and a carry
in each bit position. Since the rightmost bits of A and B can each assume one of
two values, four cases must be considered: 0+0,0+1,1+0,and 1 + 1, with a
carry of 0, as shown in the figure. The carry into the rightmost bit position
defaults to 0. For the remaining bit positions, the carry into the position can be 0
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Caryin > 0 0 1 1 1 1
Operands[: 0 0 1 1 0 0 1 1
+0 +1 +0 + + 0 + 1 + + 1
00 01 01 10 01 10 10 11
Carry Sum Example:

out Carry 11110000
Addend: A 01111100 (124)
Augend:B + 01011010 (90)
Sum 11010110 (214

Figure 2-5 Example of binary addition.

or 1, so that a total of eight input combinations must be considered as shown in
the figure.

Notice that the largest number we can represent using the eight-bit format
shown in Figure 2-5is (11111111), = (255),( and that the smallest number that
can be represented is (00000000), = (0)1o. The bit patterns 11111111 and
00000000 and all of the intermediate bit patterns represent numbers on the
closed interval from 0 to 255, which are all positive numbers. Up to this point
we have considered only unsigned numbers, but we need to represent signed
numbers as well, in which (approximately) one half of the bit patterns is assigned
to positive numbers and the other half is assighed to negative numbers. Four
common representations for base 2 signed numbers are discussed in the next sec-
tion.

SIGNED FIXED POINT NUMBERS

Up to this point we have considered only the representation of unsigned fixed
point numbers. The situation is quite different in representing signed fixed point
numbers. There are four different ways of representing signed numbers that are
commonly used: sign-magnitude, one’s complement, two’s complement, and
excess notation. We will cover each in turn, using integers for our examples.
Throughout the discussion, the reader may wish to refer to Table 2.1 which
shows for a 3-bit number how the various representations appear.
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Decimal Unsigned Sign—-Mag. 1'sComp. 2sComp. Excess4
7 111 - - - -
6 110 - - - -
5 101 - - - -
4 100 - - - -
3 011 011 011 011 111
2 010 010 010 010 110
1 001 001 001 001 101
+0 000 000 000 000 100
-0 - 100 111 000 100
-1 - 101 110 111 011
-2 - 110 101 110 010
-3 - 111 100 101 001
-4 - - - 100 000

Table 2.1: 3-bit Integer Representations

Signed Magnitude

The signed magnitude (also referred to as sign and magnitude) representation
is most familiar to us as the base 10 number system. A plus or minus sign to the
left of a number indicates whether the number is positive or negative as in +124
or —=124¢. In the binary signed magnitude representation, the leftmost bit is used
for the sign, which takes on a value of 0 or 1 for ‘+’ or ‘', respectively. The
remaining bits contain the absolute magnitude. Consider representing (+12)q
and (-12),¢ in an eight-bit format:

(+12) 10 = (00001100),
(-12)0 = (10001100),

The negative number is formed by simply changing the sign bit in the positive
number from 0 to 1. Notice that there are both positive and negative representa-
tions for zero: 00000000 and 10000000.
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There are eight bits in this example format, and all bit patterns represent valid
numbers, so there are 28 = 256 possible patterns. Only 28 — 1 = 255 different
numbers can be represented, however, since +0 and —0 represent the same num-
ber.

We will make use of the signed magnitude representation when we look at float-
ing point numbers in Section 2.3.

Onées Complement

The one’s complement operation is trivial to perform: convert all of the 1s in
the number to 0's, and all of the 0’s to 1's. See the fourth column in Table 2.1 for
examples. We can observe from the table that in the one’s complement represen-
tation the leftmost bit is O for positive numbers and 1 for negative numbers, as it
is for the signed magnitude representation. This negation, changing 1's to 0's and
changing 0’s to 1, is known as complementing the bits. Consider again repre-
senting (+12)1g and (—12), in an eight-bit format, now using the one’s comple-
ment representation:

(+12);0 = (00001100),
(-12);0 = (11110011),

Note again that there are representations for both +0 and -0, which are
00000000 and 11111111, respectively. As a result, there are only 28 —1=255
different numbers that can be represented even though there are 28 different bit
patterns.

The one’s complement representation is not commonly used. This is at least
partly due to the difficulty in making comparisons when there are two represen-
tations for 0. There is also additional complexity involved in adding numbers,
which is discussed further in Chapter 3.

Twas Complement

The two’s complement is formed in a way similar to forming the one’s comple-
ment: complement all of the bits in the number, but then add 1, and if that addi-
tion results in a carry-out from the most significant bit of the number, discard
the carry-out. Examination of the fifth column of Table 2.1 shows that in the
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two’s complement representation, the leftmost bit is again O for positive num-
bers and is 1 for negative numbers. However, this number format does not have
the unfortunate characteristic of signed-magnitude and one’s complement repre-
sentations: it has only one representation for zero. To see that this is true, con-
sider forming the negative of (+0)o, which has the bit pattern:

(+0) 10 = (00000000),

Forming the one’s complement of (00000000), produces (11111111), and add-
ing 1 to it yields (00000000),, thus (—0);o = (00000000),. The carry out of the
leftmost position is discarded in two’s complement addition (except when detect-
ing an overflow condition). Since there is only one representation for O, and since
all bit patterns are valid, there are 28 = 256 different numbers that can be repre-
sented.

Consider again representing (+12),9 and (=12), in an eight-bit format, this
time using the two’s complement representation. Starting with (+12)9 =
(00001100),, complement, or negate the number, producing (11110011),.
Now add 1, producing (11110100),, and thus (-12),¢ = (11110100),:

(+12)15 = (00001100),
(—12)10 = (11110100)2

There is an equal number of positive and negative numbers provided zero is con-
sidered to be a positive number, which is reasonable because its sign bit is 0. The
positive numbers start at 0, but the negative numbers start at —1, and so the mag-
nitude of the most negative number is one greater than the magnitude of the
most positive number. The positive number with the largest magnitude is +127,
and the negative number with the largest magnitude is —128. There is thus no
positive number that can be represented that corresponds to the negative of
—128. If we try to form the two’s complement negative of —128, then we will
arrive at a negative number, as shown below:

(~128) = (10000000),
0
01111111
+ 1

(10000000),
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The two’s complement representation is the representation most commonly used
in conventional computers, and we will use it throughout the book.

Excess Representation

In the excess or biased representation, the number is treated as unsigned, but is
“shifted” in value by subtracting the bias from it. The concept is to assign the
smallest numerical bit pattern, all zeros, to the negative of the bias, and assign the
remaining numbers in sequence as the bit patterns increase in magnitude. A con-
venient way to think of an excess representation is that a number is represented
as the sum of its two’s complement form and another number, which is known as
the “excess,” or “bias.” Once again, refer to Table 2.1, the rightmost column, for
examples.

Consider again representing (+12),q and (=12),¢ in an eight-bit format but now
using an excess 128 representation. An excess 128 number is formed by adding
128 to the original number, and then creating the unsigned binary version. For
(+12)19, we compute (128 + 12 = 140);¢ and produce the bit pattern
(10001100),. For (-12)1g, we compute (128 + —12 = 116),4 and produce the
bit pattern (01110100),:

(+12)15 = (10001100),
(-12)0 = (01110100),

Note that there is no numerical significance to the excess value: it simply has the
effect of shifting the representation of the two’s complement numbers.

There is only one excess representation for 0, since the excess representation is
simply a shifted version of the two’s complement representation. For the previous
case, the excess value is chosen to have the same bit pattern as the largest negative
number, which has the effect of making the numbers appear in numerically
sorted order if the numbers are viewed in an unsigned binary representation.
Thus, the most negative number is (—128),¢ = (00000000), and the most posi-
tive number is (+127)1o = (11111111),. This representation simplifies making
comparisons between numbers, since the bit patterns for negative numbers have
numerically smaller values than the bit patterns for positive numbers. This is
important for representing the exponents of floating point numbers, in which
exponents of two numbers are compared in order to make them equal for addi-
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tion and subtraction. We will explore floating point representations in Section
2.3.

BINARY CODED DECIMAL

Numbers can be represented in the base 10 number system while still using a
binary encoding. Each base 10 digit occupies four bit positions, which is known
as binary coded decimal (BCD). Each BCD digit can take on any of 10 values.
There are 2* = 16 possible bit patterns for each base 10 digit, and as a result, six
bit patterns are unused for each digit. In Figure 2-6, there are four decimal signif-

@ IO 00 O‘
)10 (310 )10 (D10

(b 1001 0110 1001 1000 (-301)y, Nine'scomplement
910 ®10 O ()10

(9 1001 0110 1001 1001 (-301),, Ten'scomplement
910 ®10 O (910

Figure 2-6  BCD representations of 301 (a) and =301 in nine’s complement (b) and ten’s comple-
ment (c).

0011 0000 oO0O0O1 (+301)1 Nine'sand ten's
: o bt ! complement

icant digits, so 10% = 10,000 bit patterns are valid, even though 216 = 65,536 bit
patterns are possible with 16 bits.

Although some bit patterns are unused, the BCD format is commonly used in
calculators and in business applications. There are fewer problems in represent-
ing terminating base 10 fractions in this format, unlike the base 2 representation.
There is no need to convert data that is given at the input in base 10 form (as in
a calculator) into an internal base 2 representation, or to convert from an internal
representation of base 2 to an output form of base 10.

Performing arithmetic on signed BCD numbers may not be obvious. Although
we are accustomed to using a signed magnitude representation in base 10, a dif-
ferent method of representing signed base 10 numbers is used in a computer. In
the nine’s complement number system, positive numbers are represented as in
ordinary BCD, but the leftmost digit is less than 5 for positive numbers and is 5
or greater for negative numbers. The nine’s complement negative is formed by
subtracting each digit from 9. For example, the base 10 number +301 is repre-
sented as 0301 (or simply 301) in both nine’s and ten’s complement as shown in
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Figure 2-6a. The nine’s complement negative is 9698 (Figure 2-6b), which is
obtained by subtracting each digit in 0301 from 9.

The ten’s complement negative is formed by adding 1 to the nine’s complement
negative, so the ten’s complement representation of —301 is then 9698 + 1 =
9699 as shown in Figure 2-6¢. For this example, the positive numbers range from
0 — 4999 and the negative numbers range from 5000 to 9999.

The fixed point number representation, which we explored in Section 2.2, has a
fixed position for the radix point, and a fixed number of digits to the left and
right of the radix point. A fixed point representation may need a great many dig-
its in order to represent a practical range of numbers. For example, a computer
that can represent a number as large as a trillion maintains at least 40 bits to the
left of the radix point since 240 = 10%2. If the same computer needs to represent
one trillionth, then 40 bits must also be maintained to the right of the radix
point, which results in a total of 80 bits per number.

In practice, much larger numbers and much smaller numbers appear during the
course of computation, which places even greater demands on a computer. A
great deal of hardware is required in order to store and manipulate numbers with
80 or more bits of precision, and computation proceeds more slowly for a large
number of digits than for a small number of digits. Fine precision, however, is
generally not needed when large numbers are used, and conversely, large num-
bers do not generally need to be represented when calculations are made with
small numbers. A more efficient computer can be realized when only as much
precision is retained as is needed.

RANGE AND PRECISION IN FLOATING POINT NUMBERS

A floating point representation allows a large range of expressible numbers to be
represented in a small number of digits by separating the digits used for precision
from the digits used for range. The base 10 floating point number representing
Avogadro’s number is shown below:

1. In the American number system, which is used here, a trillion = 1012, In the British
number system, this is a “million million,” or simply a “billion.” The British “milliard,” or a “thou-
sand million” is what Americans call a “billion.”
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+6.023 x 1023

Here, the range is represented by a power of 10, 1022 in this case, and the preci-
sion is represented by the digits in the fixed point number, 6.023 in this case. In
discussing floating point numbers, the fixed point part is often referred to as the
mantissa, or significand of the number. Thus a floating point number can be
characterized by a triple of numbers: sign, exponent, and significand.

The range is determined primarily by the number of digits in the exponent (two
digits are used here) and the base to which it is raised (base 10 is used here) and
the precision is determined primarily by the number of digits in the significand
(four digits are used here). Thus the entire number can be represented by a sign
and 6 digits, two for the exponent and four for the significand. Figure 2-7 shows
how the triple of sign, exponent, significand, might be formatted in a computer.

Position of decimal point

olo
Sign Exponent Significand
(two digits) (four digits)

Figure 2-7  Representation of a base 10 floating point number.

Notice how the digits are packed together with the sign first, followed by the
exponent, followed by the significand. This ordering will turn out to be helpful
in comparing two floating point numbers. The reader should be aware that the
decimal point does not need to be stored with the number as long as the decimal
point is always in the same position in the significand. (This will be discussed in
Section 2.3.2.)

If we need a greater range, and if we are willing to sacrifice precision, then we can
use just three digits in the fraction and have three digits left for the exponent
without increasing the number of digits used in the representation. An alterna-
tive method of increasing the range is to increase the base, which has the effect of
increasing the precision of the smallest numbers but decreasing the precision of
the largest numbers. The range/precision trade-off is a major advantage of using
a floating point representation, but the reduced precision can cause problems,
sometimes leading to disaster, an example of which is described in Section 2.4.
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NORMALIZATION, AND THE HIDDEN BIT

A potential problem with representing floating point numbers is that the same
number can be represented in different ways, which makes comparisons and
arithmetic operations difficult. For example, consider the numerically equivalent
forms shown below:

3584.1 x 100 = 3.5841 x 103 = .35841 x 10%,

In order to avoid multiple representations for the same number, floating point
numbers are maintained in normalized form. That is, the radix point is shifted
to the left or to the right and the exponent is adjusted accordingly until the radix
point is to the left of the leftmost nonzero digit. So the rightmost number above
is the normalized one. Unfortunately, the number zero cannot be represented in
this scheme, so to represent zero an exception is made. The exception to this rule
is that zero is represented as all 0’s in the mantissa.

If the mantissa is represented as a binary, that is, base 2, number, and if the nor-
malization condition is that there is a leading “1” in the normalized mantissa,
then there is no need to store that “1” and in fact, most floating point formats do
not store it. Rather, it is “chopped off” before packing up the number for storage,
and it is restored when unpacking the number into exponent and mantissa. This
results in having an additional bit of precision on the right of the number, due to
removing the bit on the left. This missing bit is referred to as the hidden bit, also
known as a hidden 1. For example, if the mantissa in a given format is .11010
after normalization, then the bit pattern that is stored is 1010—the left-most bit
is truncated, or hidden. We will see that the IEEE 754 floating point format uses
a hidden bit.

REPRESENTING FLOATING POINT NUMBERS IN THE COM-
PUTER—PRELIMINARIES

Let us design a simple floating point format to illustrate the important factors in
representing floating point numbers on the computer. Our format may at first
seem to be unnecessarily complex. We will represent the significand in signed
magnitude format, with a single bit for the sign bit, and three hexadecimal digits
for the magnitude. The exponent will be a 3-bit excess-4 number, with a radix of
16. The normalized form of the number has the hexadecimal point to the left of
the three hexadecimal digits.
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The bits will be packed together as follows: The sign bit is on the left, followed
by the 3-bit exponent, followed by the three hexadecimal digits of the signifi-
cand. Neither the radix nor the hexadecimal point will be stored in the packed
form.

The reason for these rather odd-seeming choices is that numbers in this format
can be compared for =, #, <, and = in their “packed” format, which is shown in
the illustration below:

L RN | 1 I
/ Three-bit \ Three base 16 digits

Sign bit exponent

Implied radix
point

Consider representing (358)1q in this format.

The first step is to convert the fixed point number from its original base into a
fixed point number in the target base. Using the method described in Section
2.1.3, we convert the base 10 number into a base 16 number as shown below:

Integer Remainder
358/16 = 22 6
22/16 = 1 6
/16 = 0 1

Thus (358)1g = (166),6. The next step is to convert the fixed point number into
a floating point number:

(166)16 = (166.);5 x 16°

Note that the form 169 reflects a base of 16 with an exponent of 0, and that the
number 16 as it appears on the page uses a base 10 form. That is, (160)10 =
(100)16. This is simply a notational convenience used in describing a floating
point number.
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The next step is to normalize the number:
(166.)15 x 16° = (.166),4 x 16°

Finally, we fill in the bit fields of the number. The number is positive, and so we
place a 0 in the sign bit position. The exponent is 3, but we represent it in excess
4, s0 the bit pattern for the exponent is computed as shown below:

011 (+3)19
Excess4 +100 (+4)19

Excess4 exponent 111

Alternatively, we could have simply computed 3 + 4 = 7 in base 10, and then
made the equivalent conversion (7)1 = (111),.

Finally, each of the base 16 digits is represented in binary as 1 = 0001, 6 = 0110,
and 6 = 0110. The final bit pattern is shown below:

Sign  Exponent Fraction

Notice again that the radix point is not explicitly represented in the bit pattern,
but its presence is implied. The spaces between digits are for clarity only, and do
not suggest that the bits are stored with spaces between them. The bit pattern as
stored in a computer’s memory would look like this:

0111000101100110

The use of an excess 4 exponent instead of a two’s complement or a signed mag-
nitude exponent simplifies addition and subtraction of floating point numbers
(which we will cover in detail in Chapter 3). In order to add or subtract two nor-
malized floating point numbers, the smaller exponent (smaller in degree, not
magnitude) must first be increased to the larger exponent (this retains the range),
which also has the effect of unnormalizing the smaller number. In order to deter-
mine which exponent is larger, we only need to treat the bit patterns as unsigned
numbers and then make our comparison. That is, using an excess 4 representa-
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tion, the smallest exponent is —4, which is represented as 000. The largest expo-
nent is +3, which is represented as 111. The remaining bit patterns for -3, -2,
-1, 0, +1, and +2 fall in their respective order as 001, 010, 011, 100, 101, and
110.

Now if we are given the bit pattern shown above for (358)y along with a
description of the floating point representation, then we can easily determine the
number. The sign bit is a 0, which means that the number is positive. The expo-
nent in unsigned form is the number (+7)1q, but since we are using excess 4, we
must subtract 4 from it, which results in an actual exponent of (+7 — 4 = +3)4.
The fraction is grouped in four-bit hexadecimal digits, which gives a fraction of
(.166)16. Putting it all together results in (+.166 x 163)16 =(358)10.

Now suppose that only 10 bits are allowed for the fraction in the above example,
instead of the 12 bits that group evenly into fours for hexadecimal digits. How
does the representation change? One approach might be to round the fraction
and adjust the exponent as necessary. Another approach, which we use here, is to
simply truncate the least significant bits by chopping and avoid making adjust-
ments to the exponent, so that the number we actually represent is:

+ 3 1 6 4
Sign  Exponent Fraction

If we treat the missing bits as 0, then this bit pattern represents (.164 x 163)16.
This method of truncation produces a biased error, since values of 00, 01, 10,
and 11 in the missing bits are all treated as 0, and so the error is in the range
from O to (.003),6. The bias comes about because the error is not symmetric
about 0. We will not explore the bias problem further here, but a more thorough
discussion can be found in (Hamacher et al., 1990).

We again stress that whatever the floating point format is, that it be known to all
parties that intend to store or retrieve numbers in that format. The Institute of
Electrical and Electronics Engineers (IEEE), has taken the lead in standardizing
floating point formats. The IEEE 754 floating point format, which is in nearly
universal usage, is discussed in Section 2.3.5.



44

CHAPTER 2

DATA REPRESENTATION

ERROR IN FLOATING POINT REPRESENTATIONS

The fact that finite precision introduces error means that we should consider
how great the error is (by “error”, we mean the distance between two adjacent
representable numbers), and whether it is acceptable for our application. As an
example of a potential pitfall, consider representing one million in floating point,
and then subtracting one million 1’s from it. We may still be left with a million if
the error is greater than 1.1

In order to characterize error, range, and precision, we use the following nota-
tion:

b Base

S Number of significant digits (not bits) in the fraction
M Largest exponent

m Smallest exponent

The number of significant digits in the fraction is represented by s, which is dif-
ferent than the number of bits in the fraction if the base is anything other than 2
(for example, base 16 uses four bits for each digit). In general, if the base is 2K
where K is an integer, then k bits are needed to represent each digit. The use of a
hidden 1 increases s by one bit even though it does not increase the number of
representable numbers. In the previous example, there are three significant digits
in the base 16 fraction and there are 12 bits that make up the three digits. There
are three bits in the excess 4 exponent, which gives an exponent range of [—22 to
22 - 1]. For this case, b= 16,5=3, M = 3, and m = —4.

In the analysis of a floating point representation, there are five characteristics that
we consider: the number of representable numbers, the numbers that have the
largest and smallest magnitudes (other than zero), and the sizes of the largest and
smallest gaps between successive numbers.

The number of representable numbers can be determined as shown in Figure

1. _Most computers these days will let this upper bound get at least as high
as 8 million using the default precision.
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2-8. The sign bit can take on two values, as indicated by the position marked

® & 0o 0o 6

2 x (M-m+1) x (b-1) x bl + 1
L ] L ] | |
Thenumber  Firstdigit Remaining T

Sign bit of exponents  of fraction digitsof  Zera

fraction

Figure 2-8  Calculation of the number of representable numbers in a floating point representation.

with an encircled “A.” The total number of exponents is indicated in position B.
Note that not all exponent bit patterns are valid in all representations. The IEEE
754 floating point standard, which we will study shortly, has a smallest exponent
of =126 even though the eight-bit exponent can support a number as small as
—128. The forbidden exponents are reserved for special numbers, such as zero
and infinity.

The first digit of the fraction is considered next, which can take on any value
except 0 in a normalized representation (except when a hidden 1 is used) as indi-
cated by (b — 1) at position C. The remaining digits of the fraction can take on
any of the b values for the base, as indicated by b*! at position D. If a hidden 1 is
used, then position C is removed and position 4 is replaced with b®. Finally, there
must be a representation for 0, which is accounted for in position E.

Consider now the numbers with the smallest and largest magnitudes. The num-
ber with the smallest magnitude has the smallest exponent and the smallest non-
zero normalized fraction. There must be a nonzero value in the first digit, and
since a 1 is the smallest value we can place there, the smallest fraction is b™. The
number with the smallest magnitude is then b™b™ = b™L, Similarly, the num-
ber with the largest magnitude has the largest exponent and the largest fraction
(when the fraction is all 1’s), which is equal to M (1-b7).

The smallest and largest gaps are computed in a similar manner. The smallest gap
occurs when the exponent is at its smallest value and the least significant bit of
the fraction changes. This gap is b™b™ = b™™. The largest gap occurs when the
exponent is at its largest value and the least significant bit of the fraction changes.
This gap is bM-.b™ = pM=,

As an example, consider a floating point representation in which there is a sign
bit, a two-bit excess 2 exponent, and a three-bit normalized base 2 fraction in
which the leading 1 is visible; that is, the leading 1 is not hidden. The representa-
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tion of 0 is the bit pattern 000000. A number line showing all possible numbers
that can be represented in this format is shown in Figure 2-9. Notice that there is

Figure 2-9 A number line showing all representable numbers in a simple floating point format.

a relatively large gap between 0 and the first representable number, because the
normalized representation does not support bit patterns that correspond to num-
bers between 0 and the first representable number.

The smallest representable number occurs when the exponent and the fraction
are at their smallest values. The smallest exponent is =2, and the smallest normal-
ized fraction is (.100),. The smallest representable number is then bMxb™t =
bt =272 =18,

Similarly, the largest representable number occurs when the exponent and the
fraction are both at their largest values. The largest fraction occurs when the frac-
tion is all 1's, which is a number that is 272 less than 1 since there are three digits
in ghe fraction. The largest representable number is then b™ x(1 - b™) = 21 x (1 -
27 =7/4.

The smallest gap occurs when the exponent is at its smallest value and the least
significant bit of the fraction changes, which is b™xb™ = p™™ = 27273 = 1/32.

Similarly, the largest gap occurs when the exponent is at its largest value and the
least significant bit of the fraction changes, which is bMxb™ = pM=s = 2173 = 1/4,

The number of bit patterns that represent valid numbers is less than the number
of possible bit patterns, due to normalization. As discussed earlier, the number of
representable numbers consists of five parts, which take into account the sign bit,
the exponents, the first significant digit, the remaining digits, and the bit pattern
for 0. This is computed as shown below:

2x(M-m)+1)x(b-1)xb"1+1
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=2x((1-(-2)+1)x(2-1)x251+1
= 33.

Notice that the gaps are small for small numbers and that the gaps are large for
large numbers. In fact, the relative error is approximately the same for all num-
bers. If we take the ratio of a large gap to a large number, and compare that to the
ratio of a small gap to a small number, then the ratios are the same:

Alargegagp—— > pM-s bs 1

A large number ————> pM x (1-b) - 1-bs b1l

and
Asmadlggp ——> pm-s b-s 1

A small number ———>  pmx (1) - 1-bs  bs1

The representation for a “small number” is used here, rather than the smallest
number, because the large gap between zero and the first representable number is
a special case.

EXAMPLE H N

Consider the problem of converting (9.375 x 10~2) to base 2 scientific notation.
That is, the result should have the form x.yy x 2°. We start by converting from
base 10 floating point to base 10 fixed point by moving the decimal point two
positions to the left, which corresponds to the =2 exponent: .09375. We then con-
vert from base 10 fixed point to base 2 fixed point by using the multiplication
method:

09375 x 2 = 0.1875
1875 % 2 = 0.375
375 x 2 = 0.75

75 X 2 = 15

a7
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5 X 2 = 1.0

50 (.09375);¢ = (.00011),. Finally, we convert to normalized base 2 floating point:
00011 =.00011 x20=1.1x27% u

THE IEEE 754 FLOATING POINT STANDARD

There are many ways to represent floating point numbers, a few of which we
have already explored. Each representation has its own characteristics in terms of
range, precision, and the number of representable numbers. In an effort to
improve software portability and ensure uniform accuracy of floating point cal-
culations, the IEEE 754 floating point standard for binary numbers was devel-
oped (IEEE, 1985). There are a few entrenched product lines that predate the
standard that do not use it, such as the IBM/370, the DEC VAX, and the Cray
line, but virtually all new architectures generally provide some level of IEEE 754
support.

The IEEE 754 standard as described below must be supported by a computer sys-
tem, and not necessarily by the hardware entirely. That is, a mixture of hardware
and software can be used while still conforming to the standard.

2.3.5.1 Formats

There are two primary formats in the IEEE 754 standard: single precision and
double precision. Figure 2-10 summarizes the layouts of the two formats. The

32 bits
! | |
prsegigj! on  [[8bits] 23 bits |
Exponent Fraction
Sign
(L5 64 bits
| |
plrje?:lljglsn | | 11 bits | 52 bits
=xponent Fraction

Figure 2-10  Single precision and double precision IEEE 754 floating point formats.

single precision format occupies 32 bits, whereas the double precision format
occupies 64 bits. The double precision format is simply a wider version of the
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single precision format.

The sign bit is in the leftmost position and indicates a positive or negative num-
ber for a 0 or a 1, respectively. The 8-bit excess 127 (not 128) exponent follows,
in which the bit patterns 00000000 and 11111111 are reserved for special cases,
as described below. For double precision, the 11-bit exponent is represented in
excess 1023, with 00000000000 and 11111111111 reserved. The 23-bit base 2
fraction follows. There is a hidden bit to the left of the binary point, which when
taken together with the single-precision fraction form a 23 + 1 = 24-bit signifi-
cand of the form 1.fff...f where the fff...f pattern represents the 23-bit fractional
part that is stored. The double-precision format also uses a hidden bit to the left
of the binary point, which supports a 52 + 1 = 53 bit significand. For both for-
mats, the number is normalized unless denormalized numbers are supported, as
described later.

There are five basic types of numbers that can be represented. Nonzero normal-
ized numbers take the form described above. A so-called “clean zero” is repre-
sented by the reserved bit pattern 00000000 in the exponent and all 0s in the
fraction. The sign bit can be 0 or 1, and so there are two representations for zero:
+0 and 0.

Infinity has a representation in which the exponent contains the reserved bit pat-
tern 11111111, the fraction contains all 0, and the sign bit is 0 or 1. Infinity is
useful in handling overflow situations or in giving a valid representation to a
number (other than zero) divided by zero. If zero is divided by zero or infinity is
divided by infinity, then the result is undefined. This is represented by the NaN
(not a number) format in which the exponent contains the reserved bit pattern
11111111, the fraction is nonzero and the sign bit is 0 or 1. A NaN can also be
produced by attempting to take the square root of —1.

As with all normalized representations, there is a large gap between zero and the
first representable number. The denormalized, “dirty zero” representation allows
numbers in this gap to be represented. The sign bit can be 0 or 1, the exponent
contains the reserved bit pattern 00000000 which represents —126 for single pre-
cision (=1022 for double precision), and the fraction contains the actual bit pat-
tern for the magnitude of the number. Thus, there is no hidden 1 for this format.
Note that the denormalized representation is not an unnormalized representation.
The key difference is that there is only one representation for each denormalized
number, whereas there are infinitely many unnormalized representations.
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Figure 2-11 illustrates some examples of IEEE 754 floating point numbers.

Value Bit Pattern
Sign Exponent Fraction
@ +1.101 x 25 0 1000 0100 101 0000 0000 0000 0000 0000
(b) -1.01011 x 2-126 1 0000 0001 010 1100 0000 0000 0000 0000
(©) +1.0 x 2127 0 1111 1110 000 0000 0000 0000 0000 0000
(d) +0 0 0000 0000 000 0000 0000 0000 0000 0000
(e -0 1 0000 0000 000 0000 0000 0000 0000 0000
) +00 0 11111111 000 0000 0000 0000 0000 0000
(9) +2-128 0 0000 0000 010 0000 0000 0000 0000 0000
(h) +NaN 0 11111111 011 0111 0000 0000 0000 0000
0] +2-128 0 01101111111 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000

Figure 2-11  Examples of IEEE 754 floating point numbers in single precision format (a — h) and
double precision format (i). Spaces are shown for clarity only: they are not part of the representation.

Examples (a) through (h) are in single precision format and example (i) is in dou-
ble precision format. Example (a) shows an ordinary single precision number.
Notice that the significand is 1.101, but that only the fraction (101) is explicitly
represented. Example (b) uses the smallest single precision exponent (-126) and
example (c) uses the largest single precision exponent (127).

Examples (d) and (e) illustrate the two representations for zero. Example (f) illus-
trates the bit pattern for +oo. There is also a corresponding bit pattern for —co,
Example (g) shows a denormalized number. Notice that although the number
itself is 27128, the smallest representable exponent is still ~126. The exponent for
single precision denormalized numbers is always —126, which is represented by
the bit pattern 00000000 and a nonzero fraction. The fraction represents the
magnitude of the number, rather than a significand. Thus we have +27128 = + 01
x 27126 which is represented by the bit pattern shown in Figure 2-11g.

Example (h) shows a single precision NaN. A NaN can be positive or negative.
Finally, example (i) revisits the representation of 2128 but now using double pre-
cision. The representation is for an ordinary double precision number and so
there are no special considerations here. Notice that 27228 has a significand of
1.0, which is why the fraction field is all O’s.

In addition to the single precision and double precision formats, there are also
single extended and double extended formats. The extended formats are not
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visible to the user, but they are used to retain a greater amount of internal preci-
sion during calculations to reduce the effects of roundoff errors. The extended
formats increase the widths of the exponents and fractions by a number of bits
that can vary depending on the implementation. For instance, the single
extended format adds at least three bits to the exponent and eight bits to the frac-
tion. The double extended format is typically 80 bits wide, with a 15-bit expo-
nent and a 64-bit fraction.

2.3.5.2 Rounding

An implementation of IEEE 754 must provide at least single precision, whereas
the remaining formats are optional. Further, the result of any single operation on
floating point numbers must be accurate to within half a bit in the least signifi-
cant bit of the fraction. This means that some additional bits of precision may
need to be retained during computation (referred to as guard bits), and there
must be an appropriate method of rounding the intermediate result to the num-
ber of bits in the fraction.

There are four rounding modes in the IEEE 754 standard. One mode rounds to
0, another rounds toward +co, and another rounds toward —co. The default mode
rounds to the nearest representable number. Halfway cases round to the number
whose low order digit is even. For example, 1.01101 rounds to 1.0110 whereas
1.01111 rounds to 1.1000.

During the 1991-1992 Operation Desert Storm conflict between Coalition
forces and Iraq, the Coalition used a military base in Dhahran, Saudi Arabia that
was protected by six U.S. Patriot Missile batteries. The Patriot system was origi-
nally designed to be mobile and to operate for only a few hours in order to avoid
detection.

The Patriot system tracks and intercepts certain types of objects, such as cruise
missiles or Scud ballistic missiles, one of which hit a U.S. Army barracks at
Dhahran on February 5, 1991, killing 28 Americans. The Patriot system failed to
track and intercept the incoming Scud due to a loss of precision in converting
integers to a floating point number representation.

A radar system operates by sending out a train of electromagnetic pulses in vari-
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ous directions and then listening for return signals that are reflected from objects
in the path of the radar beam. If an airborne object of interest such as a Scud is
detected by the Patriot radar system, then the position of a range gate is deter-
mined (see Figure 2-12), which estimates the position of the object being tracked

Missile
outside of
Validation range gate
action
Range
Gate

Area
Search action
locates missile
somewhere
within beam
Patriot
Missile Radar

System

Figure 2-12  Effect of conversion error on range gate calculation.

during the next scan. The range gate also allows information outside of its
boundaries to be filtered out, which simplifies tracking. The position of the
object (a Scud for this case) is confirmed if it is found within the range gate.

The prediction of where the Scud will next appear is a function of the Scud’s
velocity. The Scud’s velocity is determined by its change in position with respect
to time, and time is updated in the Patriot’s internal clock in 100 ms intervals.
Velocity is represented as a 24-bit floating point number, and time is represented
as a 24-bit integer, but both must be represented as 24-bit floating point num-
bers in order to predict where the Scud will next appear.

The conversion from integer time to real time results in a loss of precision that
increases as the internal clock time increases. The error introduced by the conver-
sion results in an error in the range gate calculation, which is proportional to the
target’s velocity and the length of time that the system is running. The cause of
the Dhahran incident, after the Patriot battery had been operating continuously
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for over 100 hours, is that the range gate shifted by 687 m, resulting in the failed
interception of a Scud.

The conversion problem was known two weeks in advance of the Dhahran inci-
dent as a result of data provided by lsrael, but it took until the day after the
attack for new software to arrive due to the difficulty of distributing bug fixes in
a wartime environment. A solution to the problem, until a software fix could be
made available, would have been to simply reboot the system every few hours
which would have the effect of resetting the internal clock. Since field personnel
were not informed of how long was too long to keep a system running, which
was in fact known at the time from data provided by lsrael, this solution was
never implemented. The lesson for us is to be very aware of the limitations of
relying on calculations that use finite precision.

Unlike real numbers, which have an infinite range, there is only a finite number
of characters. An entire character set can be represented with a small number of
bits per character. Three of the most common character representations, ASCII,
EBCDIC, and Unicode, are described here.

THE ASCII CHARACTER SET

The American Standard Code for Information Interchange (ASCII) is summa-
rized in Figure 2-13, using hexadecimal indices. The representation for each
character consists of 7 bits, and all 2 possible bit patterns represent valid charac-
ters. The characters in positions 00 — 1F and position 7F are special control char-
acters that are used for transmission, printing control, and other non-textual
purposes. The remaining characters are all printable, and include letters, num-
bers, punctuation, and a space. The digits 0-9 appear in sequence, as do the
upper and lower case letterst. This organization simplifies character manipula-
tion. In order to change the character representation of a digit into its numerical
value, we can subtract (30),¢ from it. In order to convert the ASCII character ‘5,’
which is in position (35)4¢, into the number 5, we compute (35 — 30 = 5)¢. In

1. As an aside, the character ‘@ and the character ‘A’ are different, and have different codes
in the ASCII table. The small letters like ‘a" are called lower case, and the capital letters like ‘A’ are
called upper case. The naming comes from the positions of the characters in a printer’s typecase.
The capital letters appear above the small letters, which resulted in the upper case / lower case nam-
ing. These days, typesetting is almost always performed electronically, but the traditional naming is
still used.
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00 NUL|10 DLE|20 SP |30 O |40 @ |50 P |60 °~ |70 p
01 SOH|11 DC1|21 ! |31 1 |41 A |51 Q |61 a |71 ¢
02 STX |12 DbC2|22 " |32 2 |42 B |52 R |62 b |72 r
03 ETX |13 DC3 |23 # |33 3 |43 C |53 S |63 ¢ |73 s
04 EOT |14 DC4 |24 $ |34 4 |4 D |54 T |64 d |74 t
05 ENQ|15 NAK|25 % |35 5 |45 E |55 U |65 e [75 u
06 ACK|16 SYN|26 & |36 6 |46 F |5 V |66 f [76 Vv
07 BEL |17 ETB |27 ' |37 7 |47 G |57 W |67 g |77 w
08 BS |18 CAN|28 ( |38 8 |48 H |58 X |68 h |78 x
09 HT |19 EM |29 ) |39 9 |49 | |5 Y |69 i |79 vy
OALF |1ASUB|2A * |[3A : |4A J |B5A Z |6A | |7A z
OBVT |IBESC|2B + |3B ; |4B K |5B [ |6B k |7B {
OCFF |1ICFS |2C ~ |3C < |4C L |5C \ |e6C | |7C |
ODCR |IDGS |2D - |3D = |4D M |5D ] |6D m |7D }
OESO |IERS |2 . |[3E > |4E N |5E ~ |6E n |7E ~
OF Sl IFUSsS |2F [/ |3F ? |4F O |5F _ |6F o |7F DEL
NUL  Null FF  Formfeed CAN Cancel
SOH Start of heading CR Carriagereturn EM  End of medium
STX Start of text SO  Shift out SUB Substitute
ETX End of text Sl Shiftin ESC Escape
EOT End of transmission DLE Datalink escape FS Fileseparator
ENQ Enquiry DC1 Device control 1 GS  Group separator
ACK Acknowledge DC2 Devicecontrol 2 RS  Record separator
BEL Bedll DC3 Device control 3 US  Unit separator
BS Backspace DC4 Devicecontrol 4 SP  Space
HT  Horizontal tab NAK Negative acknowledge DEL Delete
LF Linefeed SYN Synchronousidle
VT Vertica tab ETB End of transmission block

Figure 2-13  The ASCII character code, shown with hexadecimal indices.

order to convert an upper case letter into a lower case letter, we add (20),4. For
example, to convert the letter ‘H,” which is at location (48),¢ in the ASCII table,
into the letter *h,” which is at position (68),¢, we compute (48 + 20 = 68)4g.

THE EBCDIC CHARACTER SET

A problem with the ASCII code is that only 128 characters can be represented,
which is a limitation for many keyboards that have a lot of special characters in
addition to upper and lower case letters. The Extended Binary Coded Decimal
Interchange Code (EBCDIC) is an eight-bit code that is used extensively in IBM
mainframe computers. Since seven-bit ASCII characters are frequently repre-
sented in an eight-bit modified form (one character per byte), in whichaOoral
is appended to the left of the seven-bit pattern, the use of EBCDIC does not



CHAPTER 2  DATAREPRESENTATION 55

place a greater demand on the storage of characters in a computer. For serial
transmission, however, (see Chapter 8), an eight-bit code takes more time to
transmit than a seven-bit code, and for this case the wider code does make a dif-
ference.

The EBCDIC code is summarized in Figure 2-14. There are gaps in the table,
which can be used for application specific characters. The fact that there are gaps
in the upper and lower case sequences is not a major disadvantage because char-
acter manipulations can still be done as for ASCII, but using different offsets.

THE UNICODE CHARACTER SET

The ASCII and EBCDIC codes support the historically dominant (Latin) char-
acter sets used in computers. There are many more character sets in the world,
and a simple ASCII-to-language-X mapping does not work for the general case,
and so a new universal character standard was developed that supports a great
breadth of the world’s character sets, called Unicode.

Unicode is an evolving standard. It changes as new character sets are introduced
into it, and as existing character sets evolve and their representations are refined.
In version 2.0 of the Unicode standard, there are 38,885 distinct coded charac-
ters that cover the principal written languages of the Americas, Europe, the Mid-
dle East, Africa, India, Asia, and Pacifica.

The Unicode Standard uses a 16-bit code set in which there is a one-to-one cor-
respondence between 16-bit codes and characters. Like ASCII, there are no com-
plex modes or escape codes. While Unicode supports many more characters than
ASCII or EBCDIC, it is not the end-all standard. In fact, the 16-bit Unicode
standard is a subset of the 32-bit ISO 10646 Universal Character Set (UCS-4).

Glyphs for the first 256 Unicode characters are shown in Figure 2-15, according
to Unicode version 2.1. Note that the first 128 characters are the same as for
ASCII.

m SUMMARY
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00 NUL|20 DS |40 SP |60 - |80 A0 Co { EO \
01 SOH |21 SOS | 41 61 / 81 a |Al ~ |C1 A |E1
02 STX |22 FS |42 62 82 b |A2 s |C2 B |E2 S
03 ETX | 23 43 63 83 ¢ |A3 t C3 C |E3 T
04 PF 24 BYP | 44 64 84 d |A4 u |C4 D |E4 U
05 HT |25 LF |45 65 8% e |A5 v |C5 E |E5 V
06 LC |26 ETB | 46 66 86 f A6 w |C6 F |E6 W
07 DEL | 27 ESC | 47 67 87 g |A7 x |C7 G |E7 X
08 28 48 68 8 h |A8 y |C8 H |E8 Y
09 29 49 69 89 i A9 z |C9 | EQ9 Z
OA SMM|2A SM |4A ¢ |B6A 8A AA CA EA
OB VT |2B CU2 |4B 6B 8B AB CB EB
OC FF | 2C 4C < |6C % |8C AC CC EC
OD CR | 2D ENQ|4D ( 6D _ |8D AD CD ED
OE SO 2E ACK |4E + 6E > 8E AE CE EE
OF Sl 2F BEL | 4F | 6F ? 8F AF CF EF
10 DLE | 30 5 & |70 90 BO DO } FO O
11 DC1 | 31 51 71 91 | B1 D1 J |F1 1
12 DC2 | 32 SYN |52 72 92 k |B2 D2 K |F2 2
13 TM |33 53 73 93 | B3 D3 L F3 3
14 RES | 34 PN 54 74 94 m |B4 D4 M F4 4
15 NL |35 RS |55 75 9% n |B5 D5 N |F5 b5
16 BS |36 UC |56 76 9% o0 |B6 D6 O |F6 6
17 IL 37 EOT | 57 77 97 p |B7 D7 P |F7 7
18 CAN| 38 58 78 98 q |BS8 D8 Q |F8 8
19 EM | 39 59 79 9 r B9 D9 R |[F9 9
1A CC | 3A 5A ! A 9A BA DA FA |
IBCUl1|3BCU3|5B $ (7B # |9B BB DB FB
1C IFS |3C DC4 |5C - 7C @ |9C BC DC FC
1D IGS | 3D NAK|5D ) 7D 9D BD DD FD
1E IRS | 3E 5B ; 7E = |9E BE DE FE
1F IUS | 3F SUB |5F = = " oF BF DF FF
STX Start of text RS Reader Stop DC1 DeviceControl 1 BEL Bédll
DLE DataLink Escape PF Punch Off DC2 DeviceControl 2 SP Sapace
BS Backspace DS Digit Select DC4 DeviceControl 4 |IL Idle
ACK Acknowledge PN Punch On CU1 Customer Usel NUL Null
SOH Start of Heading SM  Set Mode CU2 Customer Use 2
ENQ Enquiry LC Lower Case CU3 Customer Use 3
ESC Escape CC Cursor Control  SYN Synchronous Idle
BYP Bypass CR Carriage Return IFS Interchange File Separator
CAN Cancel EM Endof Medium EOT End of Transmission
RES Restore FF Form Feed ETB End of Transmission Block
Sl Shift In TM Tape Mark NAK Negative Acknowledge
SO  Shift Out UC Upper Case SMM Start of Manual Message
DEL Delete FS Field Separator SOS Start of Significance
SUB Substitute HT Horizontal Tab IGS Interchange Group Separator
NL NewLine VT Vertical Tab IRS Interchange Record Separator
LF LineFeed UC Upper Case IUS Interchange Unit Separator

Figure 2-14  The EBCDIC character code, shown with hexadecimal indices.
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0000 NUL [ 0020 SP | 0040 @ | 0060 0080 Ctrl | 0DAO NBS|00CO A |O00EO a
0001 SOH |0021 ! |0041 A |0061 a |008L Ctrl | 00AL 00C1 A |O00E1 &
0002 STX [0022 " |0042 B |0062 b |0082 Ctrl [00A2 ¢ |00C2 A |OOE2 a
0003 ETX | 0023 # |0043 C |0063 c |0083 Ctrl |00OA3 £ |00C3 A |O0OE3 &
0004 EOT (0024 $ |0044 D |0064 d |0084 Ctrl |00A4 © |00C4 A |00E4 &
0005 ENQ|[0025 % |0045 E |0065 e |0085 Ctrl [00A5 ¥ |00C5 A |O0E5 &
0006 ACK | 0026 & |0046 F |0066 f |0086 Ctrl |00A6 T |00C6 A& |O00E6 e
0007 BEL |0027 ' |0047 G |0067 g |0087 Ctrl |0OA7 8§ |00C7 C |OOE7 ¢
0008 BS |[0028 ( |0048 H |0068 h |0088 Ctrl |0OOA8 ~ |00C8 E |OOE8 &
0009 HT |0029 ) |0049 | 0069 i 0089 Ctrl [00A9 © |00C9 E |O0E9 é
000A LF | 002A * |004A J | 006A | 008A Ctrl | 0OOAA 2 |O00CA E |OOEA &
000B VT |002B + |004B K |006B k |008B Ctrl |0OAB « |00CB E |OOEB &
OOOC FF |002C ~ |o004C L |o06C | 008C Ctrl [ 0OAC - |[00CC 1| 00EC i
O0OODCR |002D - |004D M |006D m |008D Ctrl |0OAD — |00CD | |OOED i
O000E SO |002E . |O004E N |OO6E n |OO8E Ctrl |[0OAE ® |O00CE 1 |OOEE 1
000F S 002F / |004F O |O006F o |OO8F Ctrl | 0OAF — |OOCF 1 |OOEF i
0010 DLE |0030 O |0050 P |0070 p |0090 Ctrl |00OBO ° 00DO D | 00FO ¢
0011 DC1 (0031 1 |0051 Q |0071 g |0091 Ctrl [OOB1 + |00D1 N |OOF1L n
0012 DC2 0032 2 |0052 R |0072 r |0092 Ctrl |00B2 -2 00D2 O |00F2 o
0013 DC3 0033 3 |0053 S |0073 s |0093 Ctrl |00B3 3 00D3 O |00F3 6
0014 DC4 |0034 4 |0054 T |0074 t |0094 Ctrl |00B4 ooD4 O |00F4 6
0015 NAK|0035 5 |[0055 U [0075 u |0095 Ctrl [0OB5 u |[00D5 O |O0OF5 &
0016 SYN|0036 6 |0056 V |0076 v |009 Ctrl [00B6  |00D6 O |O00F6 o
0017 ETB | 0037 7 |0057 W |0077 w |0097 Ctrl |00B7 00D7 X | OOF7 =+
0018 CAN|0038 8 | 0058 X |0078 x |0098 Ctrl (0OOB8 , |00D8 @ |OOF8 @
0019 EM |(0039 9 |0059 Y |0079 y |0099 Ctrl |00B9 ! 00D9 U |00F9 1
001A SUB |003A : |O005A Z |007A z |O09A Ctrl [OOBA ° |00DA U |OOFA U
001B ESC |003B ; |005B [ |007B ({ 009B Ctrl |[00BB » |00DB U |O0OFB 0
00ICFS |003C < |005C \ |o007C | 009C Ctrl [00BC /4 |00DC U |O0OFC U
00IDGS | 003D = |005D ] 007D } 009D Ctrl | 00BD /2 |00DD Y | O0OFD P
00lIE RS |003E > |O005E "~ |O0O7E ~ |OO9E Ctrl | OOBE 3/4 |[OODE y |OOFE p
001F US | 003F ? |O005F _ | 007F DEL | O09F Ctrl | OOBF ¢ | OODF g |OOFF Y
NUL  Null SOH Start of heading CAN Cancel SP  Space
STX Start of text EOT End of transmission EM Endof medium DEL Delete
ETX End of text DC1 Device control 1 SUB Substitute Ctrl  Control
ENQ Enquiry DC2 Device control 2 ESC Escape FF  Formfeed
ACK Acknowledge DC3 Devicecontrol 3 FS Fileseparator CR Carriagereturn
BEL Bell DC4 Device control 4 GS Group separator SO Shift out
BS Backspace NAK Negative acknowledge RS  Record separator Sl Shiftin
HT Horizontal tab NBS Non-breaking space US  Unit separator DLE Datalink escape
LF Linefeed ETB End of transmission block SYN Synchronousidle VT  Vertica tab

Figure 2-15 The first 256 glyphs in Unicode, shown with hexadecimal indices.



58

CHAPTER 2

DATA REPRESENTATION

m Further Reading

(Hamacher et al., 1990) provides a good explanation of biased error in floating
point representations. The IEEE 754 floating point standard is described in
(IEEE, 1985). The analysis of range, error, and precision in Section 2.3 was
influenced by (Forsythe, 1970). The GAO report (U.S. GAO report
GAO/IMTEC-92-26) gives a very readable account of the software problem that
led to the Patriot failure in Dhahran. See http://www.unicode.org for informa-
tion on the Unicode standard.

m PROBLEMS

Given a signed, fixed point representation in base 10, with three digits to
the left and right of the decimal point:

a) What is the range? (Calculate the highest positive number and the lowest
negative number.)

b) What is the precision? (Calculate the difference between two adjacent num-
bers on a number line. Remember that the error is 1/2 the precision.)

Convert the following numbers as indicated, using as few digits in the
results as necessary.

a) (47)1o to unsigned binary.
b) (=27)1¢ to binary signed magnitude.

C) (213)4 to base 10.
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d) (10110.101), to base 10.
e) (34.625) to base 4.

Convert the following numbers as indicated, using as few digits in the
results as necessary.

a) (011011), to base 10.

b) (—27),¢ to excess 32 in binary.
¢) (011011), to base 16.

d) (55.875),¢ to unsigned binary.
e) (132.2), to base 16.

Convert .2013 to decimal.

Convert (43.3)7 to base 8 using no more than one octal digit to the right
of the radix point. Truncate any remainder by chopping excess digits. Use an
ordinary unsigned octal representation.

Represent (17.5)4¢ in base 3, then convert the result back to base 10. Use
two digits of precision to the right of the radix point for the intermediate base

3 form.

Find the decimal equivalent of the four-bit two’s complement number:
1000.

Find the decimal equivalent of the four-bit one’s complement number:
1111.

Show the representation for (305),q using three BCD digits.

Show the 10’s complement representation for (=305),q using three BCD
digits.

For a given number of bits, are there more representable integers in one’s

59
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complement, two’s complement, or are they the same?

Complete the following table for the 5-bit representations (including the
sign bits) indicated below. Show your answers as signed base 10 integers.

5-bit signed magnitude 5-bit excess 16

Largest number
Most negative number
No. of distinct numbers

Complete the following table using base 2 scientific notation and an
eight-bit floating point representation in which there is a three-bit exponent
in excess 3 notation (not excess 4), and a four-bit normalized fraction with a
hidden ‘1. In this representation, the hidden 1 is to the left of the radix point.
This means that the number 1.0101 is in normalized form, whereas .101 is
not.

Base 2 scientific notation Floating point representation
Sign Exponent  Fraction

—1.0101 x 22
+1.1x 22

001 0000
1 110 1111

The IBM short floating point representation uses base 16, one sign bit, a
seven-bit excess 64 exponent and a normalized 24-bit fraction.

a) What number is represented by the bit pattern shown below?
10111111 01110000 00000000 00000000

Show your answer in decimal. Note: the spaces are included in the number for
readability only.

b) Represent (14.3)¢ in this notation.

For a normalized floating point representation, keeping everything else
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the same but;

a) decreasing the base will increase / decrease / not change the number of rep-
resentable numbers.

b) increasing the number of significant digits will increase / decrease / not
change the smallest representable positive number.

¢) increasing the number of bits in the exponent will increase / decrease / not
change the range.

d) changing the representation of the exponent from excess 64 to two’s com-
plement will increase / decrease / not change the range.

For parts (a) through (e), use a floating point representation with a sign
bit in the leftmost position, followed by a two-bit two’s complement expo-
nent, followed by a normalized three-bit fraction in base 2. Zero is represented
by the bit pattern: 000 0 0 0. There is no hidden ‘1’

a) What decimal number is represented by the bit pattern: 10010 0?

b) Keeping everything else the same but changing the base to 4 will: increase /
decrease / not change the smallest representable positive number.

¢) What is the smallest gap between successive numbers?
d) What is the largest gap between successive numbers?

e) There are a total of six bits in this floating point representation, and there
are 26 =64 unique bit patterns. How many of these bit patterns are valid?

Represent (107.15),q in a floating point representation with a sign bit, a
seven-bit excess 64 exponent, and a normalized 24-bit fraction in base 2.
There is no hidden 1. Truncate the fraction by chopping bits as necessary.

For the following single precision IEEE 754 bit patterns show the numer-
ical value as a base 2 significand with an exponent (e.g. 1.11 x 2°).

a) 0 10000011 01100000000000000000000
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b) 1 10000000 00000000000000000000000

¢) 1 00000000 00000000000000000000000

d) 111111111 00000000000000000000000

e) 011111111 11010000000000000000000

f) 0 00000001 10010000000000000000000

g) 0 00000011 01101000000000000000000
Show the IEEE 754 bit patterns for the following numbers:

a) +1.1011 x 2° (single precision)

b) +0 (single precision)

¢) —=1.00111 x 271 (double precision)

d) —NaN (single precision)

Using the IEEE 754 single precision format, show the value (not the bit
pattern) of:

a) The largest positive representable number (note: oo is not a number).
b) The smallest positive nonzero number that is normalized.

¢) The smallest positive nonzero number in denormalized format.

d) The smallest normalized gap.

e) The largest normalized gap.

f) The number of normalized representable numbers (including 0; note that
oo and NaN are not numbers).

Two programmers write random number generators for normalized float-



CHAPTER 2 DATA REPRESENTATION 63

ing point numbers using the same method. Programmer A's generator creates
random numbers on the closed interval from 0 to 1/2, and programmer B’s
generator creates random numbers on the closed interval from 1/2 to 1. Pro-
grammer B’s generator works correctly, but Programmer A’s generator pro-
duces a skewed distribution of numbers. What could be the problem with
Programmer As approach?

A hidden 1 representation will not work for base 16. Why not?

With a hidden 1 representation, can 0 be represented if all possible bit
patterns in the exponent and fraction fields are used for nonzero numbers?

Given a base 10 floating point number (e.g. .583 x 103), can the number
be converted into the equivalent base 2 form: .x x 2Y by separately converting
the fraction (.583) and the exponent (3) into base 2?
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ARITHMETIC

In the previous chapter we explored a few ways that numbers can be represented
in a digital computer, but we only briefly touched upon arithmetic operations
that can be performed on those humbers. In this chapter we cover four basic
arithmetic operations: addition, subtraction, multiplication, and division. We
begin by describing how these four operations can be performed on fixed point
numbers, and continue with a description of how these four operations can be
performed on floating point numbers.

Some of the largest problems, such as weather calculations, quantum mechanical
simulations, and land-use modeling, tax the abilities of even today’s largest com-
puters. Thus the topic of high-performance arithmetic is also important. We
conclude the chapter with an introduction to some of the algorithms and tech-
niques used in speeding arithmetic operations.

The addition of binary numbers and the concept of overflow were briefly dis-
cussed in Chapter 2. Here, we cover addition and subtraction of both signed and
unsigned fixed point numbers in detail. Since the two’s complement representa-
tion of integers is almost universal in today’s computers, we will focus primarily
on two's complement operations. We will briefly cover operations on 1's comple-
ment and BCD numbers, which have a foundational significance for other areas
of computing, such as networking (for 1's complement addition) and hand-held
calculators (for BCD arithmetic.)
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TWOS COMPLEMENT ADDITION AND SUBTRACTION

In this section, we look at the addition of signed two’s complement numbers. As
we explore the addition of signed numbers, we also implicitly cover subtraction as
well, as a result of the arithmetic principle:

a-b=a+(-h).

We can negate a number by complementing it (and adding 1, for two’s comple-
ment), and so we can perform subtraction by complementing and adding. This
results in a savings of hardware because it avoids the need for a hardware subtrac-
tor. We will cover this topic in more detail later.

We will need to modify the interpretation that we place on the results of addition
when we add two’s complement numbers. To see why this is the case, consider
Figure 3-1. With addition on the real number line, numbers can be as large or as

0 Subtracting
numbers
1 000 1
111 001
-2110 010 2
101 011 3
-3 100 Adding
-4 numbers

Figure 3-1  Number circle for 3-bit two’s complement numbers.

small as desired—the number line goes to *oo, so the real number line can
accommodate numbers of any size. On the other hand, as discussed in Chapter
2, computers represent data using a finite number of bits, and as a result can only
store numbers within a certain range. For example, an examination of Table 2.1
shows that if we restrict the size of a number to, for example, 3 bits, there will
only be eight possible two’s complement values that the number can assume. In
Figure 3-1 these values are arranged in a circle beginning with 000 and proceed-
ing around the circle to 111 and then back to 000. The figure also shows the dec-
imal equivalents of these same numbers.

Some experimentation with the number circle shows that numbers can be added
or subtracted by traversing the number circle clockwise for addition and counter-
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clockwise for subtraction. Numbers can also be subtracted by two’s complement-
ing the subtrahend and adding. Notice that overflow can only occur for addition
when the operands (“addend” and “augend”) are of the same sign. Furthermore,
overflow occurs if a transition is made from +3 to —4 while proceeding around
the number circle when adding, or from —4 to +3 while subtracting. (Two’s com-
plement overflow is discussed in more detail later in the chapter.)

Here are two examples of 8-bit two’s complement addition, first using two posi-
tive numbers:

00001010 (+10) 10
+ 00010111 (+23)10

00100001 (+33)10
A positive and a negative number can be added in a similar manner:

00000101  (+5)1
+ 11111110  (=2)

Discard carry —(1) 00000011 (+3)10

The carry produced by addition at the highest (leftmost) bit position is discarded
in two’s complement addition. A similar situation arises with a carry out of the
highest bit position when adding two negative numbers:

11111111 (<1)y
+ 11111100  (-4)

Discard carry - (1) 11111011 (-5)10

The carry out of the leftmost bit is discarded because the number system is mod-
ular—it “wraps around” from the largest positive number to the largest negative
number as Figure 3-1 shows.

Although an addition operation may have a (discarded) carry-out from the MSB,
this does not mean that the result is erroneous. The two examples above yield
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correct results in spite of the fact that there is a carry-out of the MSB. The next
section discusses overflow in two’s complement addition in more detail.

Overflow

When two numbers are added that have large magnitudes and the same sign, an
overflow will occur if the result is too large to fit in the number of bits used in
the representation. Consider adding (+80)o and (+50),¢ using an eight bit for-
mat. The result should be (+130);o, however, as shown below, the result is
(~126)y9:

01010000 (+80) 19
+00110010 (+50) 10
10000010 (-126) ¢

This should come as no surprise, since we know that the largest positive 8-bit
two's complement number is +(127) ¢, and it is therefore impossible to represent
(+130)1¢. Although the result 10000010, “looks” like 130 if we think of it in
unsigned form, the sign bit indicates a negative number in the signed form,
which is clearly wrong.

In general, if two numbers of opposite signs are added, then an overflow cannot
occur. Intuitively, this is because the magnitude of the result can be no larger
than the magnitude of the larger operand. This leads us to the definition of two’s
complement overflow:

If the numbers being added are of the same sign and the result is of the
opposite sign, then an overflow occurs and the result is incorrect. If the
numbers being added are of opposite signs, then an overflow will never
occur. As an alternative method of detecting overflow for addition, an
overflow occurs if and only if the carry into the sign bit differs from the
carry out of the sign bit.

If a positive number is subtracted from a negative number and the result
is positive, or if a negative number is subtracted from a positive number
and the result is negative, then an overflow occurs. If the numbers being
subtracted are of the same sign, then an overflow will never occur.
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HARDWARE IMPLEMENTATION OF ADDERS AND SUBTRACTORS

Up until now we have focused on algorithms for addition and subtraction. Now
we will take a look at implementations of simple adders and subtractors.

Ripple-Carry Addition and Ripple-Borrow Subtraction

In Appendix A, a design of a four-bit ripple-carry adder is explored. The adder is
modeled after the way that we normally perform decimal addition by hand, by
summing digits in one column at a time while moving from right to left. In this
section, we review the ripple-carry adder, and then take a look at a ripple-bor-
row subtractor. We then combine the two into a single addition/subtraction
unit.

Figure 3-2 shows a 4-bit ripple-carry adder that is developed in Appendix A. Two

bs az b, a, by ay by ag
C3 G G Co
W W TV E ] g
Full Full Full Full
adder adder adder adder
<y =
$3 S S S

Figure 3-2 Ripple-carry adder.

binary numbers A and B are added from right to left, creating a sum and a carry
at the outputs of each full adder for each bit position.

Four 4-bit ripple-carry adders are cascaded in Figure 3-3 to add two 16-bit num-
bers. The rightmost full adder has a carry-in of 0. Although the rightmost full
adder can be simplified as a result of the carry-in of 0, we will use the more gen-
eral form and force ¢, to 0 in order to simplify subtraction later on.

Subtraction of binary numbers proceeds in a fashion analogous to addition. We
can subtract one number from another by working in a single column at a time,
subtracting digits of the subtrahend b;, from the minuend a;, as we move from
right to left. As in decimal subtraction, if the subtrahend is larger than the minu-
end or there is a borrow from a previous digit then a borrow must be propagated

ARITHMETIC 69
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Q5 Ay A3 A B3 »p A P
bys| bia| big| byo by | by | by | by
12 Cy
C <4 4BitAdder#3 |« . . . < 4BitAdder#0 |« 0
S15 S14 S13 S12 S S S %

Figure 3-3 A 16-bit adder is made up of a cascade of four 4-bit ripple-carry adders.

to the next most significant bit. Figure 3-4 shows the truth table and a
“black-box” circuit for subtraction.

a b bor; | diff; bori,, b &
|

00 0] 0 o0 ii bor,
00 1 1 1 v
01 0 1 1 Full

01 1|0 1 sub-

10 0 1 0 tractor
10 1 0 0 bori+1<J »L

11 01| 0 o0 Giiff
11 1 1 1 (a —by)

Figure 3-4  Truth table and schematic symbol for a ripple-borrow subtractor.

Full subtractors can be cascaded to form ripple-borrow subtractors in the same
manner that full adders are cascaded to form ripple-carry adders. Figure 3-5 illus-

bs & b, &, by & bo 8 por ;
W] ) ] e
Full Full Full Full
sub- sub- sub- sub-
tractor tractor tractor tractor
bor 4 l l
diffs diff, diff; diff,

Figure 3-5 Ripple-borrow subtractor.
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trates a four-bit ripple-borrow subtractor that is made up of four full subtractors.

As discussed above, an alternative method of implementing subtraction is to
form the two’s complement negative of the subtrahend and add it to the minu-
end. The circuit that is shown in Figure 3-6 performs both addition and subtrac-

| | | ADD/

1L 1L 1L SUBTRACT

a3 2 ch )

i i i i y©
Full Full Full Full
adder adder adder adder

S3 S S S

Figure 3-6  Addition / subtraction unit.

tion on four-bit two’s complement numbers by allowing the b; inputs to be
complemented when subtraction is desired. An ADD/SUBTRACT control line
determines which function is performed. The bar over the ADD symbol indi-
cates the ADD operation is active when the signal is low. That is, if the control
line is O, then the a; and b; inputs are passed through to the adder, and the sum is
generated at the s; outputs. If the control line is 1, then the a; inputs are passed
through to the adder, but the b; inputs are one’s complemented by the XOR
gates before they are passed on to the adder. In order to form the two's comple-
ment negative, we must add 1 to the one’s complement negative, which is
accomplished by setting the carry_in line (cp) to 1 with the control input. In this
way, we can share the adder hardware among both the adder and the subtractor.

ONES COMPLEMENT ADDITION AND SUBTRACTION

Although it is not heavily used in mainstream computing anymore, the one’s
complement representation was used in early computers. One’s complement
addition is handled somewhat differently from two’s complement addition: the
carry out of the leftmost position is not discarded, but is added back into the
least significant position of the integer portion as shown in Figure 3-7. This is
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10011 (-12)
+01101 (+13)4g

100000

‘ﬂ End-around carry

+ 1

00001 (+1)49
Figure 3-7  An example of one’s complement addition with an end-around carry.

known as an end-around carry.

We can better visualize the reason that the end-around carry is needed by exam-
ining the 3-bit one’s complement number circle in Figure 3-8. Notice that the

+0 Subtracting
numbers
0 000 1
111 001
-1110 010 2
101 011 3
-2 100 Adding
-3 numbers

Figure 3-8 Number circle for a three-bit signed one’s complement representation.

number circle has two positions for 0. When we add two numbers, if we traverse
through both -0 and +0, then we must compensate for the fact that O is visited
twice. The end-around carry advances the result by one position for this situa-
tion.

Notice that the distance between —0 and +0 on the number circle is the distance
between two integers, and is not the distance between two successive represent-
able numbers. As an illustration of this point, consider adding (5.5);o and
(=1.0)1g in one’s complement arithmetic, which is shown in Figure 3-9. (Note
that we can also treat this as a subtraction problem, in which the subtrahend is
negated by complementing all of the bits, before adding it to the minuend.) In
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0101.
+ 1110.

[EnY

(+5.9)1¢
(-1.0)19

o

10011.1

+L>1 0

0100.1 (+45)

Figure 3-9 The end-around carry complicates addition for non-integers.

order to add (+5.5)1g and (—1.0) and obtain the correct result in one’s comple-
ment, we add the end-around carry into the one’s position as shown. This adds
complexity to our number circle, because in the gap between +0 and -0, there
are valid numbers that represent fractions that are less than 0, yet they appear on
the number circle before —0 appears. If the number circle is reordered to avoid
this anomaly, then addition must be handled in a more complex manner.

The need to look for two different representations for zero, and the potential
need to perform another addition for the end-around carry are two important
reasons for preferring the two's complement arithmetic to one’s complement
arithmetic.

Multiplication and division of fixed point numbers can be accomplished with
addition, subtraction, and shift operations. The sections that follow describe
methods for performing multiplication and division of fixed point numbers in
both unsigned and signed forms using these basic operations. We will first cover
unsigned multiplication and division, and then we will cover signed multiplica-
tion and division.

UNSIGNED MULTIPLICATION

Multiplication of unsigned binary integers is handled similar to the way it is car-
ried out by hand for decimal numbers. Figure 3-10 illustrates the multiplication
process for two unsigned binary integers. Each bit of the multiplier determines
whether or not the multiplicand, shifted left according to the position of the
multiplier bit, is added into the product. When two unsigned n-bit numbers are
multiplied, the result can be as large as 2n bits. For the example shown in Figure
3-10, the multiplication of two four-bit operands results in an eight-bit product.
When two signed n-bit numbers are multiplied, the result can be as large as only
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1101 (13, MultiplicandM
x1011 (11, MultiplierQ
1101
1101 Partial products
0000O
1101
10001111 (143), ProductP

Figure 3-10 Multiplication of two unsigned binary integers.
2(n-1)+1 = (2n-1) bits, because this is equivalent to multiplying two (n-1)-bit
unsigned numbers and then introducing the sign bit.

A hardware implementation of integer multiplication can take a similar form to
the manual method. Figure 3-11 shows a layout of a multiplication unit for

Multiplicand (M)

[mdm ]y
L4
Y ) Shift and
4-8it Adder < A% Adtlll_ cC;gt;irétrol
14 shiftRight )\q
0
/\ /
ag| a| a1 | agl—=>» as| o[ a1 | o
A La Multiplier (Q)
Register

Figure 3-11 A serial multiplier.

four-bit numbers, in which there is a four-bit adder, a control unit, three four-bit
registers, and a one-bit carry register. In order to multiply two numbers, the mul-
tiplicand is placed in the M register, the multiplier is placed in the Q register, and
the A and C registers are cleared to zero. During multiplication, the rightmost bit
of the multiplier determines whether the multiplicand is added into the product
at each step. After the multiplicand is added into the product, the multiplier and
the A register are simultaneously shifted to the right. This has the effect of shift-
ing the multiplicand to the left (as for the manual process) and exposing the next
bit of the multiplier in position qg.

Figure 3-12 illustrates the multiplication process. Initially, C and A are cleared,
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Multiplicand (M):
1101
Initial values
C A Q
(o o000 1011
0 1101 1011 AddMtoA
0 0110 1101  Shift
1 0011 1101 AddMtoA
0 1001 1110  Shift
0 0100 1111  Shift(noadd)
1 0001 1111 AddMtoA
o (1000 1111) shift
Product

Figure 3-12  An example of multiplication using the serial multiplier.

and M and Q hold the multiplicand and multiplier, respectively. The rightmost
bit of Q is 1, and so the multiplier M is added into the product in the A register.
The A and Q registers together make up the eight-bit product, but the A register
is where the multiplicand is added. After M is added to A, the A and Q registers
are shifted to the right. Since the A and Q registers are linked as a pair to form
the eight-bit product, the rightmost bit of A is shifted into the leftmost bit of Q.
The rightmost bit of Q is then dropped, C is shifted into the leftmost bit of A,
and a 0 is shifted into C.

The process continues for as many steps as there are bits in the multiplier. On the
second iteration, the rightmost bit of Q is again 1, and so the multiplicand is
added to A and the C/A/Q combination is shifted to the right. On the third iter-
ation, the rightmost bit of Q is 0 so M is not added to A, but the C/A/Q combi-
nation is still shifted to the right. Finally, on the fourth iteration, the rightmost
bit of Q is again 1, and so M is added to A and the C/A/Q combination is
shifted to the right. The product is now contained in the A and Q registers, in
which A holds the high-order bits and Q holds the low-order bits.

UNSIGNED DIVISION

In longhand binary division, we must successively attempt to subtract the divisor
from the dividend, using the fewest number of bits in the dividend as we can.
Figure 3-13 illustrates this point by showing that (11), does not “fit” in 0 or 01,
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0010 R1

11]0111
11

Figure 3-13  Example of base 2 division.

but does fit in 011 as indicated by the pattern 001 that starts the quotient.

Computer-based division of binary integers can be handled similar to the way
that binary integer multiplication is carried out, but with the complication that
the only way to tell if the dividend does not “fit” is to actually do the subtraction
and test if the remainder is negative. If the remainder is negative then the sub-
traction must be “backed out” by adding the divisor back in, as described below.

In the division algorithm, instead of shifting the product to the right as we did
for multiplication, we now shift the quotient to the left, and we subtract instead
of adding. When two n-bit unsigned numbers are being divided, the result is no
larger than n bits.

Figure 3-14 shows a layout of a division unit for four-bit numbers in which there

Divisor (M)
0 | mg| my| my| my
15
Y\ ) Shift and
5-Bit Adder |« Add/ Sub
Sub | Control Logic
12 shiftLeft ] A
0
£ P
[24] as| @[ ay | aole— a5 a2 | a1 | o}

a, s A Dividend (Q)
Register

Figure 3-14 A serial divider.

is a five-bit adder, a control unit, a four-bit register for the dividend Q, and two
five-bit registers for the divisor M and the remainder A. Five-bit registers are used
for A and M, instead of 4-bit registers as we might expect, because an extra bit is
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needed to indicate the sign of the intermediate result. Although this division
method is for unsigned numbers, subtraction is used in the process and negative
partial results sometimes arise, which extends the range from —16 through +15,
thus there is a need for 5 bits to store intermediate results.

In order to divide two four-bit numbers, the dividend is placed in the Q register,
the divisor is placed in the M register, and the A register and the high order bit of
M are cleared to zero. The leftmost bit of the A register determines whether the
divisor is added back into the dividend at each step. This is necessary in order to
restore the dividend when the result of subtracting the divisor is negative, as
described above. This is referred to as restoring division, because the dividend is
restored to its former value when the remainder is negative. When the result is
not negative, then the least significant bit of Q is set to 1, which indicates that
the divisor “fits” in the dividend at that point.

Figure 3-15 illustrates the division process. Initially, A and the high order bit of
M are cleared, and Q and the low order bits of M are loaded with the dividend
and divisor, respectively. The A and Q registers are shifted to the left as a pair and
the divisor M is subtracted from A. Since the result is negative, the divisor is
added back to restore the dividend, and q is cleared to 0. The process repeats by
shifting A and Q to the left, and by subtracting M from A. Again, the result is
negative, so the dividend is restored and g is cleared to 0. On the third iteration,
A and Q are shifted to the left and M is again subtracted from A, but now the
result of the subtraction is not negative, so qq is set to 1. The process continues
for one final iteration, in which A and Q are shifted to the left and M is sub-
tracted from A, which produces a negative result. The dividend is restored and g
is cleared to 0. The quotient is now contained in the Q register and the remain-
der is contained in the A register.

SIGNED MULTIPLICATION AND DIVISION

If we apply the multiplication and division methods described in the previous
sections to signed integers, then we will run into some trouble. Consider multi-
plying =1 by +1 using four-bit words, as shown in the left side of Figure 3-16.
The eight-bit equivalent of +15 is produced instead of —1. What went wrong is
that the sign bit did not get extended to the left of the result. This is not a prob-
lem for a positive result because the high order bits default to 0, producing the
correct sign bit 0.

A solution is shown in the right side of Figure 3-16, in which each partial prod-
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Divisor (M):
00011

Initial values

A Q
(o0o000 0111
00000 1110  Shiftleft
-D1101 1110  SubtractMfromA
00000 1110 RestoreA(AddMtoA)
00000 11;0 Clear dy
00001 1100  Shiftleft
D1110 1100  SubtractMfromA
00001 1100 RestoreA
00001 11;0 Clear gy
00011 1000  Shiftleft
00000 1000  SubtractM fromA
00000 10%1 Set g
00001 0010  Shiftleft
-D1110 0010  SubtractMfromA
00001 0010 RestoreA
00001) (0010) Clearq
A
Remainder Quotient

Figure 3-15 An example of division using the serial divider.

1111 (-1 11111111 ()
x 0001 (+1) x 0001 (+1)y
1111 11111111
0000 0000000
0000 000000
0000 00000
00001111 (+15)y 11111111 (-1

(Incorrect; result should be —1)

Figure 3-16 Multiplication of signed integers.

uct is extended to the width of the result, and only the rightmost eight bits of the
result are retained. If both operands are negative, then the signs are extended for
both operands, again retaining only the rightmost eight bits of the result.

Signed division is more difficult. We will not explore the methods here, but as a
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general technique, we can convert the operands into their positive forms, per-
form the division, and then convert the result into its true signed form as a final
step.

Arithmetic operations on floating point numbers can be carried out using the
fixed point arithmetic operations described in the previous sections, with atten-
tion given to maintaining aspects of the floating point representation. In the sec-
tions that follow, we explore floating point arithmetic in base 2 and base 10,
keeping the requirements of the floating point representation in mind.

FLOATING POINT ADDITION AND SUBTRACTION

Floating point arithmetic differs from integer arithmetic in that exponents must
be handled as well as the magnitudes of the operands. As in ordinary base 10
arithmetic using scientific notation, the exponents of the operands must be made
equal for addition and subtraction. The fractions are then added or subtracted as
appropriate, and the result is normalized.

This process of adjusting the fractional part, and also rounding the result can
lead to a loss of precision in the result. Consider the unsigned floating point
addition (.101 x 23+ 111 x 2% in which the fractions have three significant dig-
its. We start by adjusting the smaller exponent to be equal to the larger exponent,
and adjusting the fraction accordingly. Thus we have .101 x 23=.010 x 2%, los-
ing .001 x 23 of precision in the process. The resulting sum is

(.010 +.111) x 2*=1.001 x 2% = .1001 x 2°,

and rounding to three significant digits, .100 x 2° and we have lost another
0.001 x 2% in the rounding process.

Why do floating point numbers have such complicated formats?

We may wonder why floating point numbers have such a complicated structure,
with the mantissa being stored in signed magnitude representation, the exponent
stored in excess notation, and the sign bit separated from the rest of the magni-
tude by the intervening exponent field. There is a simple explanation for this
structure. Consider the complexity of performing floating point arithmetic in a
computer. Before any arithmetic can be done, the number must be unpacked
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from the form it takes in storage. (See Chapter 2 for a description of the IEEE
754 floating point format.) The exponent and mantissa must be extracted from
the packed bit pattern before an arithmetic operation can be performed; after the
arithmetic operation(s) are performed, the result must be renormalized and
rounded, and then the bit patterns are re-packed into the requisite format.

The virtue of a floating point format that contains a sign bit followed by an
exponent in excess notation, followed by the magnitude of the mantissa, is that
two floating point numbers can be compared for >, <, and = without unpacking.
The sign bit is most important in such a comparison, and it appropriately is the
MSB in the floating point format. Next most important in comparing two num-
bers is the exponent, since a change of £ 1 in the exponent changes the value by a
factor of 2 (for a base 2 format), whereas a change in even the MSB of the frac-
tional part will change the value of the floating point number by less than that.

In order to account for the sign bit, the signed magnitude fractions are repre-
sented as integers and are converted into two’s complement form. After the addi-
tion or subtraction operation takes place in two’s complement, there may be a
need to normalize the result and adjust the sign bit. The result is then converted
back to signed magnitude form.

FLOATING POINT MULTIPLICATION AND DIVISION

Floating point multiplication and division are performed in a manner similar to
floating point addition and subtraction, except that the sign, exponent, and frac-
tion of the result can be computed separately. If the operands have the same sign,
then the sign of the result is positive. Unlike signs produce a negative result. The
exponent of the result before normalization is obtained by adding the exponents
of the source operands for multiplication, or by subtracting the divisor exponent
from the dividend exponent for division. The fractions are multiplied or divided
according to the operation, followed by normalization.

Consider using three-bit fractions in performing the base 2 computation: (+.101
x 22) x (=110 x 23). The source operand signs differ, which means that the
result will have a negative sign. We add exponents for multiplication, and so the
exponent of the result is 2 + —3 = —1. We multiply the fractions, which produces
the product .01111. Normalizing the product and retaining only three bits in the
fraction produces —.111 x 272,

Now consider using three-bit fractions in performing the base 2 computation:
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(+.110 x 2%) / (+.100 x 2%). The source operand signs are the same, which means
that the result will have a positive sign. We subtract exponents for division, and
so the exponent of the result is 5 — 4 = 1. We divide fractions, which can be done
in a number of ways. If we treat the fractions as unsigned integers, then we will
have 110/100 = 1 with a remainder of 10. What we really want is a contiguous
set of bits representing the fraction instead of a separate result and remainder,
and so we can scale the dividend to the left by two positions, producing the
result: 11000/100 = 110. We then scale the result to the right by two positions to
restore the original scale factor, producing 1.1. Putting it all together, the result
of dividing (+.110 x 2°) by (+.100 x 2%) produces (+1.10 x 21). After normaliza-
tion, the final result is (+.110 x 22).

For many applications, the speed of arithmetic operations are the bottleneck to
performance. Most supercomputers, such as the Cray, the Tera, and the Intel
Hypercube are considered “super” because they excel at performing fixed and
floating point arithmetic. In this section we discuss a number of ways to improve
the speed of addition, subtraction, multiplication, and division.

HIGH PERFORMANCE ADDITION

The ripple-carry adder that we reviewed in Section 3.2.2 may introduce too
much delay into a system. The longest path through the adder is from the inputs
of the least significant full adder to the outputs of the most significant full adder.
The process of summing the inputs at each bit position is relatively fast (a small
two-level circuit suffices) but the carry propagation takes a long time to work its
way through the circuit. In fact, the propagation time is proportional to the
number of bits in the operands. This is unfortunate, since more significant fig-
ures in an addition translates to more time to perform the addition. In this sec-
tion, we look at a method of speeding the carry propagation in what is known as
a carry lookahead adder.

In Appendix B, reduced Boolean expressions for the sum (s;) and carry outputs
(cj+1) of a full adder are created. These expressions are repeated below, with sub-
scripts added to denote the relative position of a full adder in a ripple-carry
adder:

s; = a;bjc;+abc;+abc;+abc;
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Civ1 = bicitaie;+ab;
We can factor the second equation and obtain:
Civq = a;b;+ (a;+b))c;
which can be rewritten as:
civ1 = Gt P
where: Gj=ajb; and P;=a;+b;.

The G; and P; terms are referred to as generate and propagate functions, respec-
tively, for the effect they have on the carry. When G; = 1, a carry is generated at
stage i. When P; = 1, then a carry is propagated through stage i if either a; or b; is
a 1. The Gj and P; terms can be created in one level of logic since they only
depend on an AND or an OR of the input variables, respectively.

The carries again take the most time. The carry ¢, out of stage 0 is Gy + Pgcg, and
since ¢cg = O for addition, we can rewrite this as ¢; = Gy. The carry ¢, out of stage
1is G4 + P4cq, and since ¢, = Gy, we can rewrite this as: ¢, = Gy + P1Gg. The
carry cg out of stage 2 is G, + P,C,, and since ¢, = G; + P;Gg, we can rewrite this
as: ¢3 = Gy + P,G4 + PoP1Gq. Continuing one more time for a four-bit adder, the
carry out of stage 3 is Gz + P3c3, and since ¢z = G, + P,G; + P,P1Gg, we can
rewrite this as: Cq = G3 + P3GZ + P3P261 + P3P2P160'

We can now create a four-bit carry lookahead adder as shown in Figure 3-17. We
still have the delay through the full adders as before, but now the carry chain is
broken into independent pieces that require one gate delay for G; and P; and two
more gate delays to generate c;,;. Thus, a depth of three gate delays is added, but
the ripple-carry chain is removed. If we assume that each full adder introduces a
gate delay of two, then a four-bit carry lookahead adder will have a maximum
gate delay of five, whereas a four-bit ripple-carry adder will have a maximum gate
delay of eight. The difference between the two approaches is more pronounced
for wider operands. This process is limited to about eight bits of carry-lookahead,
because of gate fanin limitations discussed in Appendix A. For additions of num-
bers having more than eight bits, the carry-lookahead circuits can be cascaded to
compute the carry in and carry out of each carry-lookahead unit. (See the
EXAMPLE at the end of the chapter.)
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Figure 3-17 Carry-lookahead adder.

HIGH PERFORMANCE MULTIPLICATION

A number of methods exist for speeding the process of multiplication. Two
methods are described in the sections below. The first approach gains perfor-
mance by skipping over blocks of 1's, which eliminates addition steps. A parallel
multiplier is described next, in which a cross product among all pairs of multi-
plier and multiplicand bits is formed. The result of the cross product is summed
by rows to produce the final product.

The Booth Algorithm

The Booth algorithm treats positive and negative numbers uniformly. It operates
on the fact that strings of 0’ or 1's in the multiplier require no additions — just
shifting. Additions or subtractions take place at the boundaries of the strings,
where transitions take place from 0 to 1 or from 1 to 0. A string of 1’s in the mul-
tiplier from bit positions with weights 2" to 2" can be treated as 2" — 2. For
example, if the multiplier is 001110 (+14) 1, thenu=3and v=1,s0 2* - 2% =
14,
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In a hardware implementation, the multiplier is scanned from right to left. The
first transition is observed going from 0 to 1, and so 2 is subtracted from the ini-
tial value (0). On the next transition, from 1 to 0, 2% is added, which results in
+14. A 0 is considered to be appended to the right side of the multiplier in order
to define the situation in which a 1 is in the rightmost digit of the multiplier.

If the multiplier is recoded according to the Booth algorithm, then fewer steps
may be needed in the multiplication process. Consider the multiplication exam-
ple shown in Figure 3-18. The multiplier (14),, contains three 1's, which means

010101 (219 Multiplicand
0 01110 (14, Multiplier

x 0+1 0 0-1 O Booth recoded
T T multiplier

111111010110 (-21x2)y
000101010000 (20x16)y

000100100110 (294 Product

Figure 3-18 Multiplication of signed integers.

that three addition operations are required for the shift/add multiplication proce-
dure that is described in Section 3.3.1. The Booth recoded multiplier is obtained
by scanning the original multiplier from right to left, and placing a —1 in the
position where the first 1 in a string is encountered, and placing a +1 in the posi-
tion where the next 0 is seen. The multiplier 001110 thus becomes 0 +1 0 0 -1
0. The Booth recoded multiplier contains just two nonzero digits: +1 and -1,
which means that only one addition operation and one subtraction operation are
needed, and so a savings is realized for this example.

A savings is not always realized, however, and in some cases the Booth algorithm
may cause more operations to take place than if it is not used at all. Consider the
example shown in Figure 3-19, in which the multiplier consists of alternating 1's
and 0. This is the same example shown in Figure 3-18 but with the multipli-
cand and multiplier swapped. Without Booth recoding of the multiplier, three
addition operations are required for the three 1’s in the multiplier. The Booth
recoded multiplier, however, requires six addition and subtraction operations,
which is clearly worse. We improve on this in the next section.
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001110 (14 Multplicand
01 010 1 (214 Multiplier
X +1-1+1-1+1-1 Booth recoded
T T A ¢ A T Subtract multiplier
Add

111111110010 (-14x1)y
0 00O 0O0OO0OOODI1IT1100 (14x2q
111111001000 (-14x4)
000001110000 (14x8)y
111100100000 (-14x16)9
000111000000 (14x32
000100100110 (294, Product

Figure 3-19 A worst case Booth recoded multiplication example.

The Modified Booth Algorithm

One solution to this problem is to group the recoded multiplier bits in pairs,
known as bit pair recoding, which is also known as the modified Booth algo-
rithm. Grouping bit pairs from right to left produces three “+1,—1” pairs as
shown in Figure 3-20. Since the +1 term is to the left of the —1 term, it has a

001110 (21) Multiplicand
01 010 1 (14, Multiplier
X ‘+1 _1||+1 —1H+1 -1 Booth recoded multiplier
+1 +1 +1 Bit pair recoded multiplier
0 00O O0OO0OOOOTI1IT110 (14xDy
0 00O 0O0OO0OO1T11000 (14x4y
0 00011100000 (14x16)
000100100110 (294, Product

Figure 3-20 Multiplication with bit-pair recoding of the multiplier.

weight that is twice as large as the weight for the —1 position. Thus, we might
think of the pair as having the collective value +2 — 1 = +1.

In a similar manner, the pair —1,+1 is equivalent to =2 + 1 = —1. The pairs +1,+1
and —1,-1 cannot occur. There are a total of seven pairs that can occur, which are
shown in Figure 3-21. For each case, the value of the recoded bit pair is multi-
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] Corresponding
Boothpair ~ Recoded multiplier bits
(i+1,0)  bitpar (i) (i+1,i,i-1)
1
0O 0 = 0 000 or 111
0 +1 = +1 001
0 -1 = -1 110
+1 0 = +2 011
+1 +1 = —
+1 -1 = +1 010
-1 0 = =2 100
-1 +1 = -1 101
-1 -1 = J—

Figure 3-21  Recoded bit pairs.

plied by the multiplicand and is added to the product. In an implementation of
bit pair recoding, the Booth recoding and bit pair recoding steps are collapsed
into a single step, by observing three multiplier bits at a time, as shown in the
corresponding multiplier bit table.

The process of bit pair recoding of a multiplier guarantees that in the worst case,
only w/2 additions (or subtractions) will take place for a w-bit multiplier.

Array Multipliers

The serial method we used for multiplying two unsigned integers in Section
3.2.1 requires only a small amount of hardware, but the time required to multi-
ply two numbers of length w grows as w2, We can speed the multiplication pro-
cess so that it completes in just 2w steps by implementing the manual process
shown in Figure 3-10 in parallel. The general idea is to form a one-bit product
between each multiplier bit and each multiplicand bit, and then sum each row of
partial product elements from the top to the bottom in systolic (row by row)
fashion.

The structure of a systolic array multiplier is shown in Figure 3-22. A partial
product (PP) element is shown at the bottom of the figure. A multiplicand bit
(m;) and a multiplier bit (g;) are multiplied by the AND gate, which forms a par-
tial product at position (i,J) in the array. This partial product is added with the
partial product from the previous stage (b;) and any carry that is generated in the
previous stage (). The result has a width of 2w, and appears at the bottom of the
array (the high order w bits) and at the right of the array (the low order w bits).
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Figure 3-22  Parallel pipelined array multiplier.

HIGH PERFORMANCE DIVISION

We can extend the unsigned integer division technique of Section 3.3.2 to pro-
duce a fractional result in computing a/b. The general idea is to scale a and b to
look like integers, perform the division process, and then scale the quotient to
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correspond to the actual result of dividing a by b.

A faster method of division makes use of a lookup table and iteration. An itera-
tive method of finding a root of a polynomial is called Newton’s iteration, which
is illustrated in Figure 3-23. The goal is to find where the function f(x) crosses the

f(x)

\ A X
Xi  Xj+1

Figure 3-23  Newton'’s iteration for zero finding. Adapted from [Goldberg, 1990].

x axis by starting with a guess x; and then using the error between f(x;) and zero
to refine the guess.

The tangent line at f(x;) can be represented by the equation:
y —f(x)) = F'(x;)(x —x;).

The tangent line crosses the x axis at:
f(x;)
f(x;)

Xiv1 = X~

The process repeats while f(x) approaches zero.

The number of bits of precision doubles on each iteration (see [Goldberg,
1990]), and so if we are looking to obtain 32 bits of precision and we start with a
single bit of precision, then five iterations are required to reach our target preci-
sion. The problem now is to cast division in the form of finding a zero for f(x).

Consider the function 1/x — b which has a zero at 1/b. If we start with b, then we
can compute 1/b by iteratively applying Newton’s method. Since f'(x) = -1/%?,
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we now have:

1/x;-b
-1/ x?

Xiv1 = X

= x;+x;—x?b = x;,(2-x,b)

Thus, we only need to perform multiplication and subtraction in order to per-
form division. Further, if our initial guess for xg is good enough, then we may
only need to perform the iteration a few times.

Before using this method on an example, we need to consider how we will obtain
our initial guess. If we are working with normalized fractions, then it is relatively
easy to make use of a lookup table for the first few digits. Consider computing
1/.101101 using a 16-bit normalized base 2 fraction in which the leading 1 is not
hidden. The first three bits for any binary fraction will be one of the patterns:
100, .101, .110, or .111. These fractions correspond to the base 10 numbers
1/2, 5/8, 3/4, and 7/8, respectively. The reciprocals of these numbers are 2, 8/5,
4/3, and 8/7, respectively. We can store the binary equivalents in a lookup table,
and then retrieve x based on the first three bits of b.

The leading 1 in the fraction does not contribute to the precision, and so the
leading three bits of the fraction only provide two bits of precision. Thus, the
lookup table only needs two bits for each entry, as shown in Figure 3-24.

B = First three Actual base 10  Corresponding
bits of b value of 1/B lookup table entry
.100 2 10
101 13/5 01
110 113 01
A11 17 01

Figure 3-24 A three-bit lookup table for computing Xg.

Now consider computing 1/.1011011 using this floating point representation.
We start by finding xg using the table shown in Figure 3-24. The first three bits
of the fraction b are 101, which corresponds to xg = 01. We compute X, = Xg(2 -
Xob) and obtain, in unsigned base 2 arithmetic: x; = 01(10 — (01)(.1011011)) =
1.0100101. Our two bits of precision have now become four bits of precision.
For this example, we will retain as much intermediate precision as we can. In
general, we only need to retain at most 2p bits of intermediate precision for a
p-bit result. We iterate again, obtaining eight bits of precision:
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X, = X1(2 = x4b) = 1.0100101(10 - (1.0100101)(.1011011))
=1.011001011001001011101.

We iterate again, obtaining our target 16 bits of precision:

X3 = X5(2 = Xob) = (1.011001011001001011101)(2 -
(1.011001011001001011101)(.1011011)) = 1.011010000001001

= (1.40652466)1o. The precise value is (1.40659341),q, but our 16-bit value is
as close to the precise value as it can be.

RESIDUE ARITHMETIC

Addition, subtraction, and multiplication can all be performed in a single, carry-
less step using residue arithmetic. The residue number system is based on rela-
tively prime integers called moduli. The residue of an integer with respect to a
particular modulus is the least positive integer remainder of the division of the
integer by the modulus. A set of possible moduli are 5, 7, 9, and 4. With these
moduli, 5 x 7 x 9 x 4 = 1260 integers can be uniquely represented. A table show-
ing the representation of the first twenty decimal integers using moduli 5, 7, 9,
and 4 is shown in Figure 3-25.

Decimal Residue Decimal Residue

5794 5794
0 0000 10 0312
1 1111 11 1423
2 2222 12 2530
3 3333 13 3641
4 4440 14 4052
5 0551 15 0163
6 1662 16 1270
7 2073 17 2381
8 3180 18 3402
9 4201 19 4513

Figure 3-25 Representation of the first twenty decimal integers in the residue number system for
the given moduli.

Addition and multiplication in the residue number system result in valid residue
numbers, provided the size of the chosen number space is large enough to con-



CHAPTER 3

tain the results. Subtraction requires each residue digit of the subtrahend to be
complemented with respect to its modulus before performing addition. Addition
and multiplication examples are shown in Figure 3-26. For these examples, the

29+ 27=56 10x17=170
Decimal Residue Decimal Residue
5794 5794
29 4121 10 0312
27 2603 17 2381
56 1020 170 0282

Figure 3-26  Examples of addition and multiplication in the residue number system.

moduli used are 5, 7, 9, and 4. Addition is performed in parallel for each col-
umn, with no carry propagation. Multiplication is also performed in parallel for
each column, independent of the other columns.

Although residue arithmetic operations can be very fast, there are a number of
disadvantages to the system. Division and sign detection are difficult, and a rep-
resentation for fractions is also difficult. Conversions between the residue num-
ber system and weighted number systems are complex, and often require
involved methods such as the Chinese remainder theorem. The conversion
problem is important because the residue number system is not very useful with-
out being translated to a weighted number system so that magnitude compari-
sons can be made. However, for integer applications in which the time spent in
addition, subtraction, and multiplication outweighs the time spent in division,
conversion, etc., the residue number system may be a practical approach. An
important application area is matrix-vector multiplication, which is used exten-
sively in signal processing.

EXAMPLE: WIDE WORD HIGH PERFORMANCE
ADDER

A practical word width for a carry lookahead adder (CLA) is four bits, whereas a
16-bit word width is not as practical because of the large fan-ins and fan-outs of
the internal logic. We can subdivide a 16-bit addition problem into four 4-bit
groups in which carry lookahead is used within the groups, and in which carry
lookahead is also used among the groups. This organization is referred to as a
group carry lookahead adder (GCLA). For this example, we will compare a
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16-bit CLA with a 16-bit GCLA in terms of gate delays, fan-ins, and fan-outs.

Figure 3-27 shows a 16-bit GCLA that is composed of four 4-bit CLAs, with

Q12— 35 8—a Y- P — 383
by, —bys bg — by by —b; bg — b3
T R SO T
Co
Ci2 Cg Cy

CLA; |« CLA, |« CLA; |« CLA, |

i i i &

S12—S15 Ss—Si $—57 SH—S3
GP;| |GG, GP,| |GG, GP,| |GG, GP,| |GGy
Yy LA YY LA 7
:— Group Carry Lookahead Logic <
16

Figure 3-27 A 16-bit group carry lookahead adder.

some additional logic that generates the carries between the four-bit groups.
Each group behaves as an ordinary CLA, except that the least significant carry
into each CLA is treated as a variable instead of as a 0, and that group generate
(GG) and group propagate (GP) signals are generated. A GG signal is generated
when a carry is generated somewhere within a group, and all of the more signifi-
cant propagate signals are true. This means that a carry into a group will propa-
gate all the way through the group. The corresponding equations for the least
significant GG and GP signals in Figure 3-27 are shown below:

GGO = G3 + P3G2 + P3P2G1 + P3P2P1G0
GPO = P3P2P1PO
The remaining GG and GP signals are computed similarly.

The carry into each group, except for the carry into CLA, is computed from the
GG and GP signals. For example, ¢, is true when GGy, is true or when GPg and
Cg are both true. The corresponding equation is:

Cq= GGO + GPOCO'
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Higher order carries out of each group are computed in a similar manner:
Cg = GG]_ + GP]_C4 = GGl + GPlGGO + GPleoco.

C1o = GGZ + GP2C8 = GGZ + GP2GGl + szeplGGo +
szGplGP(]CO.

Ci6 = GG3 + GP3012 = GG3 + GPgGGZ + GP3GP2GG1 +
GP4GP,GP,GG, + GP3GP,GP,GPyt.

In terms of gate delays, a 16-bit CLA has a longest path of five gate delays to pro-
duce the most significant sum bit, as discussed in Section 3.5.1. Each of the
CLAs in the 16-bit GCLA also has at least five gate delays on the longest path.
The GG and GP signals are generated in three gate delays, and the carry signals
out of each group are generated in two more gate delays, resulting in a total of
five gate delays to generate the carry out of each group. In the highest bit posi-
tion (515), five gate delays are needed to generate ¢;,, and another five gate delays
are needed to generate s;5, for a worst case path of 10 gate delays through the
16-bit GCLA.

With regard to fan-in and fan-out, the maximum fan-in of any gate in a four-bit
CLA is four (refer to Figure 3-17), and in general, the maximum fan-in of any
gate in an n-bit CLA is n. Thus, the maximum fan-in of any gate in a 16-bit
CLA is 16. In comparison, the maximum fan-in for a 16-bit GCLA is five (for
generating ¢4g). The fan-outs for both cases are the same as the fan-ins.

In summary, the 16-bit CLA has only half of the depth of the 16-bit GCLA (five
gate delays vs. 10 gate delays). The highest fan-in for a 16-bit CLA is 16, which is
more than three times the highest fan-in for a 16-bit GCLA (16 vs. five). The
highest fan-outs are the same as the highest fan-ins for each case. =

Calculator arithmetic has traditionally been done in base 10, rather than in base
2. Calculators need to be small and inexpensive, and for that reason base 10
numbers are represented in binary coded decimal (BCD — see Chapter 2) using 4
bits per BCD digit, instead of using base 2 which would require a somewhat
resource-intensive base conversion. A small 4-bit ALU can then do the computa-
tions in serial fashion, BCD digit by BCD digit.
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3.6.1 THE HP9100A CALCULATOR

The popular HP9100A calculator, which came out in the late 1960, performed
the basic arithmetic functions: addition, subtraction, multiplication, and divi-
sion, as well as square root, X, In x, log X, trigonometric functions, and other
functions, all using base 10 arithmetic. The HP9100A is actually a desktop cal-
culator (see Figure 3-28), but was considered small for what it accomplished with

Figure 3-28 HP 9100 series desktop calculator. [Source: http://www.teleport.com/
~dgh/91003q.jpg.]

the technology of the day. The HP9100 display shows 10 significant digits, but
all calculations are performed to 12 significant digits, with the two last significant
digits (which are known as guard digits) being used for truncation and
round-off errors. Although the HP9100A may seem like a relic today, the arith-
metic methods are still relevant.

The next two sections describe general techniques for performing fixed point and
floating point BCD addition and subtraction. Other calculator operations
described in the remaining sections are performed in a similar manner, making
use of the addition and subtraction operations.

3.6.2 BINARY CODED DECIMAL ADDITION AND SUBTRACTION

Consider adding (+255)1g and (+63)1o in BCD representation, as illustrated in
Figure 3-29. Each base 10 digit occupies four bit positions, and addition is per-
formed on a BCD digit by BCD digit basis (not bit by bit), from right to left, as
we would normally carry it out by hand using a decimal representation. The
result, (+318),¢, is produced in BCD form as shown.
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0 1 0 0 <— Carries
0000 0010 0101 0101 (¥2595)
L | L | L | L |

(OI1 (210 (10 ()10
+ Iooool Ioooo} \0110| J0011I (+63)19
Q)10 (O ()10 (310

0000 0011 0001 1000 (+318)y
L | L | L | L |
0)10 (310 Do )10

Figure 3-29  An addition example using binary coded decimal.

Subtraction in BCD is handled similar to the way subtraction is handled in two’s
complement (adding the negative of the subtrahend) except that ten’s comple-
ment is used instead of two’s complement. Consider performing the subtraction
operation (255 — 63 = 192),,. We can cast this into the addition problem (255 +
(-63) = 192),. We start by forming the nine’s complement of 63:
9999
-0063
9936

We then add 1 in order to form the 10’s complement:

9936
+0001

9937

The addition operation can now be performed, as shown in Figure 3-30. Notice

1 1 0 1 0 <— Carries
0000 0010 0101 0101 (+259)
+ 1001 1001 0011 0111 (-63)y

1 0000 0001 1001 0010 (+192)

!

Discard carry

Figure 3-30 BCD addition in ten’s complement.

that the carry out of the highest digit position is discarded, as in two's comple-
ment addition.

95
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Unlike the two’s complement representation, we cannot simply look at the left-
most bit to determine the sign. In ten’s complement, the number is positive if the
leftmost digit is between 0 and 4, inclusive, and is negative otherwise. (The BCD
bit patterns for 4 and 5 are 0100 and 0101, respectively, which both have a 0 in
the leftmost bit, yet 4 indicates a positive number and 5 indicates a negative
number.) If we use an excess 3 encoding for each digit, then the leftmost bit will
indicate the sign. Figure 3-31 shows the encoding. Notice that six of the bit pat-

BCD Bit Normal BCD  Excess3

Pattern value value
0 00O 0 d
0 0 01 1 d
0010 2 d _
0 011 3 0
0100 4 1 .
0101 5 2 rositve
0110 6 3
0111 7 4 ]
1 000 8 5
1 001 9 6 Negative
1 010 d 7 numbers
1 011 d 8
1100 d 9
1101 d d o
1 110 d d
111 1 d d

Figure 3-31  Excess 3 encoding of BCD digits.

terns cannot occur, and so they are marked as don't cares, ‘d’.

Now consider the design of a BCD full adder. The BCD full adder should sum
two BCD digits and a carry-in, and should produce a sum BCD digit and a
carry-out, all using excess 3. A design using two’s complement full adders is
shown in Figure 3-32. The excess 3 BCD digits are added in the upper four two’s
complement full adders (FAs). Since each operand is represented in excess 3, the
result is in excess 6. In order to restore the result to excess 3, we need to subtract
3 from the result. As an alternative, we can add 13 to the result since 16 — 3 = 16
+ 13 in a four-bit representation, discarding the carry out of the highest bit posi-
tion. The latter approach is used in Figure 3-32, in which 13,4 = 1101, is added
to the result. Note that this only works if there is no carry. When there is a carry,
then we need to also subtract 10 (or equivalently, add 6) from the result, besides
subtracting 3 (or adding 13) to restore the excess 3 representation, and produce a
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Figure 3-32 A BCD full adder.

carry out. The approach taken here is to add 3,5 = 0011, for this situation,
which has the same effect as adding (6 + 13) % 16 = 3, as shown in Figure 3-32.

In order to perform BCD subtraction, we can create a ten's complement subtrac-
tor using base 10 full subtractors, as we did for the two’s complement subtractor
described in Section 3.2.2. Alternatively, we can form the ten’s complement neg-
ative of the subtrahend, and then apply ordinary BCD addition. Figure 3-33

0021 0021
+ 9966 - 0034
9987 - 0013

Ten's Complement Signed Magnitude

Figure 3-33  The computation (21 — 34 = —-13),4 in ten’s complement and signed magnitude.

shows the computation (21 — 34 = —13),, using the latter subtraction method
for four-digit numbers. The ten’s complement negative of 34 is added to 21,
which results in 9987 in ten's complement, which is (=13)g in signed magni-
tude.

BCD FLOATING POINT ADDITION AND SUBTRACTION
Consider a base 10 floating point representation with a two digit signed magni-
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tude exponent and an eight digit signed magnitude fraction. On a calculator, a
sample entry might look like:

—.37100000 x 10712
which is in normalized form.

Now how is the number stored? A calculator user sees signed magnitude for both
the exponent and the fraction, but internally, we might use a ten’s complement
representation for both the exponent and the fraction. For the case above, the
representation using ten’s complement would be: 88 for the exponent, and
62900000 for the fraction. Using an excess 3 representation in binary results in
an exponent of 1011 1011 and a fraction of 1001 0101 1100 0011 0011 0011
0011 0011. Note that since we are using the leftmost bit for the sign, that the
exponent range is [-50 to +49] and that the fraction range is [-.50000000 to
+.49999999].

If we now try to represent +.9 in base 10, then we are again stuck because the
leftmost bit of the fraction is used for a sign bit. That is, we cannot use 1100 in
the most significant digit of the fraction, because although that is the excess 3
representation of 9, it makes the fraction appear negative. Here is a better solu-
tion: Just use ten’s complement for base 10 integer arithmetic, such as for expo-
nents, and use signed magnitude for fractions.

Here is the summary thus far: we use a ten’s complement representation for the
exponent since it is an integer, and we use a base 10 signed magnitude represen-
tation for the fraction. A separate sign bit is maintained for the fraction, so that
each digit can take on any of the 10 values 0-9 (except for the first digit, which
cannot be a zero) and so we can now represent +.9. We should also represent the
exponent in excess 50 to make comparisons easier. The example above now looks
like this internally, still in excess 3 binary form, with a two digit excess 50 expo-
nent:

Sign bit: 1
Exponent: 01101011

Fraction: 0110 1010 0100 0011 0011 0011 0011 0011 0011
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In order to add two numbers in this representation, we just go through the same
steps that we did for the base 2 floating point representation described earlier. We
start by adjusting the exponent and fraction of the smaller operand until the
exponents of both operands are the same. If the difference in exponents is so
great that the fraction of the smaller operand is shifted all the way to the right,
then the smaller operand is treated as 0. After adjusting the smaller fraction, we
convert either or both operands from signed magnitude to ten’s complement
according to whether we are adding or subtracting, and whether the operands are
positive or negative. Note that this will work now because we can treat the frac-
tions as integers.

®m SUMMARY

m FURTHER READING

(Goldberg, 1990) is a concise but thorough source of numerous aspects of com-
puter arithmetic. (Hamacher et al., 1990) provides a classic treatment of integer
arithmetic. (Flynn, 1970) gives an early treatment of division by zero finding.
(Garner, 1959) gives a complete description of the residue number system,
whereas (Koren, 1993) gives a more tutorial treatment of the subject. (Huang
and Goodman, 1979) describes how a memory based residue processor can be
constructed. Koren (1993) also provides additional details on cascading
carry-lookahead units. (Cochran, 1968) is a good source for the programming of
the HP9100A calculator.
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® PROBLEMS

Show the results of adding the following pairs of five-bit (i.e. one sign bit
and four data bits) two’s complement numbers and indicate whether or not
overflow occurs for each case:

10110 11110 11111
+10111 +11101 +01111

One way to determine that overflow has occurred when adding two num-
bers is to detect that the result of adding two positive numbers is negative, or
that the result of adding two negative numbers is positive. The overflow rules
are different for subtraction: there is overflow if the result of subtracting a neg-
ative number from a positive number is negative or the result of subtracting a
positive number from a negative number is positive.
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Subtract the numbers shown below and determine whether or not an overflow
has occurred. Do not form the two’s complement of the subtrahend and add:
perform the subtraction bit by bit, showing the borrows generated at each
position:

o o
[
S e)

o

Add the following two’s complement and one’s complement binary num-
bers as indicated. For each case, indicate if there is overflow.

T e t (0] e t

ord
= OoOWw
= s)

onpl enen I
1.101 1
1.011 0

or o
= OoOWw
= s)

onpl emen
1.1 01
+ + 1.01 1

Show the process of serial unsigned multiplication for 1010 (multipli-
cand) multiplied by 0101 (multiplier). Use the form shown in Figure 3-12.

Show the process of serial unsigned multiplication for 11.1 (multiplicand)
multiplied by 01.1 (multiplier) by treating the operands as integers. The result
should be 101.01.

Show the process of serial unsigned division for 1010 divided by 0101.
Use the form shown in Figure 3-15.

Show the process of serial unsigned division for 1010 divided by 0100,
but instead of generating a remainder, compute the fraction by continuing the
process. That is, the result should be 10.1,.

The equation used in Section 3.5.1 for ¢, in a carry lookahead adder
assumes that cq is O for addition. If we perform subtraction by using the addi-
tion / subtraction unit shown in Figure 3-6, then ¢y = 1. Rewrite the equation
for ¢4 when cp = 1.

ARITHMETIC
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The 16-bit adder shown below uses a ripple carry among four-bit carry
lookahead adders.

a5 . Ao ay; - g ay..ay as ... 8
b5 ... byy by ... bg b;..by bs ... by
44 2 4L a 8 a4 % 4] 4 =C
A I S O A A A
Carry Carry Carry Carry
L ookahead L ookahead L ookahead L ookahead
Adder (CLA) Adder (CLA) Adder (CLA) Adder (CLA)
Clﬁ(J ¢

E A S sl O
Sit - S S7. 84 S35

4
S15 - St

() What is the longest gate delay through this adder?

(b) What is the shortest gate delay through this adder, from any input to any
output?

(c) What is the gate delay for s;,?

Use the Booth algorithm (not bit pair recoding) to multiply 010011
(multiplicand) by 011011 (multiplier).

Use bit pair recoding to multiply 010011 (multiplicand) by 011011 (mul-
tiplier).

Compute the maximum gate delay through a 32-bit carry lookahead
adder.

What is the maximum number of inputs for any logic gate in a 32-bit
carry lookahead adder, using the scheme described in this chapter?

In a carry-select adder a carry is propagated from one adder stage to the
next, similar to but not exactly the same as a carry lookahead adder. As with
many other adders, the carry out of a carry-select adder stage is either 0 or 1.
In a carry-select adder, two sums are computed in parallel for each adder stage:
one sum assumes a carry-in of 0, and the other sum assumes a carry-in of 1.



CHAPTER 3

The actual carry-in selects which of the two sums to use (with a MUX, for
example). The basic layout is shown below for an eight-bit carry-select adder:

b7 a7 bg ag bs as by a,

b; a; bgag bs a5 by a,

by az by a, byag by ag

WAL e e e

Four-Bit Adder (FBA)

Four-Bit Adder (FBA)

Four-Bit Adder (FBA)

Coy ¥ yS yS yS Coy ¥vS7 ¥y yS yS

cy=1 10-to-5 MUX c4=0

Cy

A

= Ll

ST % 5

Sy

Y Y VY
2 S %

Q<€

Assume that each four-bit adder (FBA) unit uses carry lookahead internally.
Compare the number of gate delays needed to add two eight-bit numbers
using FBA units in a carry-select configuration vs. using FBA units in which
the carry is rippled from one FBA to the next.

(a) Draw a diagram of a functionally equivalent eight-bit carry lookahead con-
figuration using the FBAs shown above.

(b) Show the number of gate delays for each adder configuration, by both the
8-bit carry-select adder shown above and the adder designed in part (a) above.

The path with the maximum gate delay through the array multiplier
shown in Figure 3-22 starts in the top right PP element, then travels to the
bottom row, then across to the left. The maximum gate delay through a PP
element is three. How many gate delays are on the maximum gate delay path
through an array multiplier that produces a p-bit result?

Given multiplication units that each produce a 16-bit unsigned product
on two unsigned 8-bit inputs, and 16-bit adders that produce a 16-bit sum
and a carry-out on two 16-bit inputs and a carry-in, connect these units so
that the overall unit multiplies 16-bit unsigned numbers, producing a 32-bit

result.

Using Newton’s iteration for division, we would like to obtain 32 bits of
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precision. If we use a lookup table that provides eight bits of precision for the
initial guess, how many iterations need to be applied?

Add (641)1¢ to (259)4¢ in unsigned BCD, using as few digits in the result
as necessary.

Add (123),¢ and (—=178),q in signed BCD, using four digit words.
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THE INSTRUCTION SET
ARCHITECTURE

In this chapter we tackle a central topic in computer architecture: the language
understood by the computer’s hardware, referred to as its machine language.
The machine language is usually discussed in terms of its assembly language,
which is functionally equivalent to the corresponding machine language except
that the assembly language uses more intuitive names such as Move, Add, and
Jump instead of the actual binary words of the language. (Programmers find con-
structs such as “Add r0, r1, r2” to be more easily understood and rendered with-
out error than 0110101110101101.)

We begin by describing the Instruction Set Architecture (ISA) view of the
machine and its operations. The ISA view corresponds to the Assembly Lan-
guage/Machine Code level described in Figure 1-4: it is between the High Level
Language view, where little or none of the machine hardware is visible or of con-
cern, and the Control level, where machine instructions are interpreted as regis-
ter transfer actions, at the Functional Unit level.

In order to describe the nature of assembly language and assembly language pro-
gramming, we choose as a model architecture the ARC machine, which is a sim-
plification of the commercial SPARC architecture common to Sun computers.
(Additional architectural models are covered in The Computer Architecture Com-
panion volume.)

We illustrate the utility of the various instruction classes with practical examples
of assembly language programming, and we conclude with a Case Study of the
Java bytecodes as an example of a common, portable assembly language that can
be implemented using the native language of another machine.
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The ISA of a computer presents the assembly language programmer with a view
of the machine that includes all the programmer-accessible hardware, and the
instructions that manipulate data within the hardware. In this section we look at
the hardware components as viewed by the assembly language programmer. We
begin with a discussion of the system as a whole: the CPU interacting with its
internal (main) memory and performing input and output with the outside
world.

THE SYSTEM BUS MODEL REVISITED
Figure 4-1 revisits the system bus model that was introduced in Chapter 1.

CPU
(ALY, Memory Input and
Registers, Output (1/0)
and Control)

" DataBus
=}
M
g Address Bus
&
Control Bus

Figure 4-1 The system bus model of a computer system.

The purpose of the bus is to reduce the number of interconnections between the
CPU and its subsystems. Rather than have separate communication paths
between memory and each 1/O device, the CPU is interconnected with its mem-
ory and 1/O systems via a shared system bus. In more complex systems there
may be separate busses between the CPU and memory and CPU and 1/0.

Not all of the components are connected to the system bus in the same way. The
CPU generates addresses that are placed onto the address bus, and the memory
receives addresses from the address bus. The memory never generates addresses,
and the CPU never receives addresses, and so there are no corresponding connec-
tions in those directions.

In a typical scenario, a user writes a high level program, which a compiler trans-
lates into assembly language. An assembler then translates the assembly language
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program into machine code, which is stored on a disk. Prior to execution, the
machine code program is loaded from the disk into the main memory by an
operating system.

During program execution, each instruction is brought into the ALU from the
memory, one instruction at a time, along with any data that is needed to execute
the instruction. The output of the program is placed on a device such as a video
display, or a disk. All of these operations are orchestrated by a control unit, which
we will explore in detail in Chapter 6. Communication among the three compo-
nents (CPU, Memory, and 1/0O) is handled with busses.

An important consideration is that the instructions are executed inside of the
ALU, even though all of the instructions and data are initially stored in the mem-
ory. This means that instructions and data must be loaded from the memory into
the ALU registers, and results must be stored back to the memory from the ALU
registers.

MEMORY

Computer memory consists of a collection of consecutively numbered
(addressed) registers, each one of which normally holds one byte. A byte is a col-
lection of eight bits (sometimes referred to by those in the computer communi-
cations community as an octet). Each register has an address, referred to as a
memory location. A nibble, or nybble, as it is sometimes spelled, refers to a col-
lection of four adjacent bits. The meanings of the terms “bit,” “byte,” and “nib-
ble” are generally agreed upon regardless of the specifics of an architecture, but
the meaning of word depends upon the particular processor. Typical word sizes
are 16, 32, 64, and 128 bits, with the 32-bit word size being the common form
for ordinary computers these days, and the 64-bit word growing in popularity. In
this text, words will be assumed to be 32-bits wide unless otherwise specified. A
comparison of these data types is shown in Figure 4-2.

In a byte-addressable machine, the smallest object that can be referenced in
memory is the byte, however, there are usually instructions that read and write
multi-byte words. Multi-byte words are stored as a sequence of bytes, addressed
by the byte of the word that has the lowest address. Most machines today have
instructions that can access bytes, half-words, words, and double-words.

When multi-byte words are used, there are two choices about the order in which
the bytes are stored in memory: most significant byte at lowest address, referred
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Bit [0l

Nibble

Byte 10110000

16-bit word (halfword) [11001001 01000110

32-bit word (10110100 00110101 10011001 01011000

64-bit word (double) [01011000 01010101 10110000 11110011
(11001110 11101110 01111000 00110101]

128-bit word (quad)  [01011000 01010101 10110000 11110011]
(11001110 11101110 01111000 00110101]
(00001011 10100110 11110010 11100110
(10100100 01000100 10100101 01010001]

Figure 4-2 Common sizes for data types.

to as big-endian, or least significant byte stored at lowest address, referred to as
little-endian. The term “endian” comes from the issue of whether eggs should be
broken on the big or little end, which caused a war by bickering politicians in
Jonathan Swift’s Gulliver’s Travels. Examples of big and little-endian formats for a
4-byte, 32-bit word is illustrated in Figure 4-3.

Byte
. . <~ . .
31 wvee Big-Endian \ LSB - 0 31 wee Little-Endian | o
roor rpoor
X X+l x+2 x+3 x+3 x+2 x+1 X

Word address is x for both big-endian and little-endian formats.

Figure 4-3 Big-endian and little-endian formats.

The bytes in a multi-byte word are stored at consecutive addresses, as shown in
Figure 4-3. In a byte-addressable memory each byte is accessed by its specific
address. The 4-byte word is accessed by referencing the address of the byte with
the lowest address, x in Figure 4-3. This is true regardless of whether it is
big-endian or little-endian. Since addresses are counted in sequence beginning
with zero, the highest address is one less than the size of the memory. The highest
address for a 232 byte memory is 232_1. The lowest address is O.

The example memory that we will use for the remainder of the chapter is shown
in Figure 4-4. This memory has a 32-bit address space, which means that a pro-
gram can access a byte of memory anywhere in the range from 0 to 232 — 1. The
address space for our example architecture is divided into distinct regions which
are used for the operating system, input and output (I/O), user programs, and
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Address Data
<«—32 bits——> Data
0> Address Control In
Reserved for
operating system
2048 >
User Space
MEMORY
Top of stack l<— Stack pointer
System Stack
231 _ 4 —> | Bottom of stack
Disk |
Terminal = 1/0 space
Printer 7 Data
Out
232_4 —>
e A
byte o314

Figure 4-4 A memory map for an example architecture (not drawn to scale).

the system stack, which comprise the memory map, as shown in Figure 4-3. The
memory map differs from one implementation to another, which is partly why
programs compiled for the same type of processor may not be compatible across
systems.

The lower 211 = 2048 addresses of the memory map are reserved for use by the
operating system. The user space is where a user’s assembled program is loaded,
and can grow during operation from location 2048 until it meets up with the
system stack. The system stack starts at location 231 — 4 and grows toward lower
addresses. The portion of the address space between 231 and 232 — 1 is reserved
for 1/0O devices. The memory map is thus not entirely composed of real memory,
and in fact there may be large gaps where neither real memory nor 1/O devices
exist. Since 1/0 devices are treated like memory locations, ordinary memory read
and write commands can be used for reading and writing devices. This is referred
to as memory mapped 1/0.

It is important to keep the distinction clear between what is an address and what
is data. An address in this example memory is 32 bits wide, and a word is also 32
bits wide, but they are not the same thing. An address is a pointer to a memory
location, which holds data.
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In this chapter we assume that the computer’s memory is organized in a single
address space. The term address space refers to the numerical range of memory
addresses to which the CPU can refer. In Chapter 7 (Memory), we will see that
there are other ways that memory can be organized, but for now, we assume that
memory as seen by the CPU has a single range of addresses. What decides the
size of that range? It is the size of a memory address that the CPU can place on
the address bus during read and write operations. A memory address that is n bits
wide can specify one of 2" items. This memory could be referred to as having an
n-bit address space, or equivalently as having a (2") byte address space. For exam-
ple, a machine having a 32-bit address space will have a maximum capacity of
2%2 (4 GB) of memory. The memory addresses will range from O to 232.1, which
is 0 to 4,294,967,295 decimal, or in the easier to manipulate hexadecimal for-
mat, from 00000000H to FFFFFFFFFH. (The ‘H’ indicates a hexadecimal
number in many assembly languages.)

THE CPU

Now that we are familiar with the basic components of the system bus and mem-
ory, we are ready to explore the internals of the CPU. At a minimum, the CPU
consists of a data section that contains registers and an ALU, and a control sec-
tion, which interprets instructions and effects register transfers, as illustrated in
Figure 4-5. The data section is also referred to as the datapath.

Registers
¢ »| Control Unit
ALU
L 1 L |
Datapath Control Section
(Data Section)

System
Figure 4-5 High level view of a CPU.

The control unit of a computer is responsible for executing the program instruc-
tions, which are stored in the main memory. (Here we will assume that the
machine code is interpreted by the control unit one instruction at a time, though
in Chapter 9 we shall see that many modern processors can process several
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instructions simultaneously.) There are two registers that form the interface
between the control unit and the data unit, known as the program counter
(PC)Jr and the instruction register (IR). The PC contains the address of the
instruction being executed. The instruction that is pointed to by the PC is
fetched from the memory, and is stored in the IR where it is interpreted. The
steps that the control unit carries out in executing a program are:

1) Fetch the next instruction to be executed from memory.
2) Decode the opcode.

3) Read operand(s) from main memory, if any.

4) Execute the instruction and store results.

5) Go to step 1.

This is known as the fetch-execute cycle.

The control unit is responsible for coordinating these different units in the exe-
cution of a computer program. It can be thought of as a form of a “computer
within a computer” in the sense that it makes decisions as to how the rest of the
machine behaves. We will treat the control unit in detail in Chapter 6.

The datapath is made up of a collection of registers known as the register file
and the arithmetic and logic unit (ALU), as shown in Figure 4-6. The figure
depicts the datapath of an example processor we will use in the remainder of the
chapter.

The register file in the figure can be thought of as a small, fast memaory, separate
from the system memory, which is used for temporary storage during computa-
tion. Typical sizes for a register file range from a few to a few thousand registers.
Like the system memory, each register in the register file is assigned an address in
sequence starting from zero. These register “addresses” are much smaller than
main memory addresses: a register file containing 32 registers would have only a
5-bit address, for example. The major differences between the register file and the
system memory is that the register file is contained within the CPU, and is there-
fore much faster. An instruction that operates on data from the register file can
often run ten times faster than the same instruction that operates on data in

t In Intel processors the program counter is called the instruction pointer, IP.
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Register Register
Source 1 Source 2
(rs1) (rs2)

From Data
Bus

Register
File
< Control Unit selects
registersand ALU
/ function
To Address ToDaa
Bus ALU Bus X
Status to Control
Unit

Register Destination (rd)
Figure 4-6  An example datapath.

memory. For this reason, register-intensive programs are faster than the equiva-
lent memory intensive programs, even if it takes more register operations to do
the same tasks that would require fewer operations with the operands located in
memory.

Notice that there are several busses inside the datapath of Figure 4-6. Three bus-
ses connect the datapath to the system bus. This allows data to be transferred to
and from main memory and the register file. Three additional busses connect the
register file to the ALU. These busses allow two operands to be fetched from the
register file simultaneously, which are operated on by the ALU, with the results
returned to the register file.

The ALU implements a variety of binary (two-operand) and unary (one-oper-
and) operations. Examples include add, and, not, or, and multiply. Operations
and operands to be used during the operations are selected by the Control Unit.
The two source operands are fetched from the register file onto busses labeled
“Register Source 1 (rs1)” and “Register Source 2 (rs2).” The output from the
ALU is placed on the bus labeled “Register Destination (rd),” where the results
are conveyed back to the register file. In most systems these connections also
include a path to the System Bus so that memory and devices can be accessed.
This is shown as the three connections labeled “From Data Bus”, “To Data Bus”,
and “To Address Bus.”
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The Instruction Set

The instruction set is the collection of instructions that a processor can execute,
and in effect, it defines the processor. The instruction sets for each processor type
are completely different one from the other. They differ in the sizes of instruc-
tions, the kind of operations they allow, the type of operands they operate on,
and the types of results they provide.This incompatibility in instruction sets is in
stark contrast to the compatibility of higher level languages such as C, Pascal,
and Ada. Programs written in these higher level languages can run almost
unchanged on many different processors if they are re-compiled for the target
processor.

(One exception to this incompatibility of machine languages is programs com-
piled into Java bytecodes, which are a machine language for a virtual machine.
They will run unchanged on any processor that is running the Java Virtual
Machine. The Java Virtual Machine, written in the assembly language of the tar-
get machine, intercepts each Java byte code and executes it as if it were running
on a Java hardware (“real”) machine. See the Case Study at the end of the chapter
for more details.)

Because of this incompatibility among instruction sets, computer systems are
often identified by the type of CPU that is incorporated into the computer sys-
tem. The instruction set determines the programs the system can execute and has
a significant impact on performance. Programs compiled for an IBM PC (or
compatible) system use the instruction set of an 80x86 CPU, where the X’ is
replaced with a digit that corresponds to the version, such as 80586, more com-
monly referred to as a Pentium processor. These programs will not run on an
Apple Macintosh or an IBM RS6000 computer, since the Macintosh and IBM
machines execute the instruction set of the Motorola PowerPC CPU. This does
not mean that all computer systems that use the same CPU can execute the same
programs, however. A PowerPC program written for the IBM RS6000 will not
execute on the Macintosh without extensive modifications, however, because of
differences in operating systems and 1/O conventions.

We will cover one instruction set in detail later in the chapter.

Software for generating machine language programs

A compiler is a computer program that transforms programs written in a
high-level language such as C, Pascal, or Fortran into machine language. Com-
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pilers for the same high level language generally have the same “front end,” the
part that recognizes statements in the high-level language. They will have differ-
ent “back ends,” however, one for each target processor. The compiler’s back end
is responsible for generating machine code for a specific target processor. On the
other hand, the same program, compiled by different C compilers for the same
machine can produce different compiled programs for the same source code, as
we will see.

In the process of compiling a program (referred to as the translation process), a
high-level source program is transformed into assembly language, and the
assembly language is then translated into machine code for the target machine by
an assembler. These translations take place at compile time and assembly time,
respectively. The resulting object program can be linked with other object pro-
grams, at link time. The linked program, usually stored on a disk, is loaded into
main memory, at load time, and executed by the CPU, at run time.

Although most code is written in high level languages, programmers may use
assembly language for programs or fragments of programs that are time or
space-critical. In addition, compilers may not be available for some special pur-
pose processors, or their compilers may be inadequate to express the special oper-
ations which are required. In these cases also, the programmer may need to resort
to programming in assembly language.

High level languages allow us to ignore the target computer architecture during
coding. At the machine language level, however, the underlying architecture is
the primary consideration. A program written in a high level language like C,
Pascal, or Fortran may look the same and execute correctly after compilation on
several different computer systems. The object code that the compiler produces
for each machine, however, will be very different for each computer system, even
if the systems use the same instruction set, such as programs compiled for the
PowerPC but running on a Macintosh vs. running on an IBM RS6000.

Having discussed the system bus, main memory, and the CPU, we now examine
details of a model instruction set, the ARC.

In the remainder of this chapter, we will study a model architecture that is based
on the commercial Scalable Processor Architecture (SPARC) processor that was
developed at Sun Microsystems in the mid-1980's. The SPARC has become a
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popular architecture since its introduction, which is partly due to its “open”
nature: the full definition of the SPARC architecture is made readily available to
the public (SPARC, 1992). In this chapter, we will look at just a subset of the
SPARC, which we call “A RISC Computer” (ARC). “RISC” is yet another acro-
nym, for reduced instruction set computer, which is discussed in Chapter 9. The
ARC has most of the important features of the SPARC architecture, but without
some of the more complex features that are present in a commercial processor.

ARC MEMORY

The ARC is a 32-bit machine with byte-addressable memory: it can manipulate
32-bit data types, but all data is stored in memory as bytes, and the address of a
32-bit word is the address of its byte that has the lowest address. As described
earlier in the chapter in the context of Figure 4-4, the ARC has a 32-bit address
space, in which our example architecture is divided into distinct regions for use
by the operating system code, user program code, the system stack (used to store
temporary data), and input and output, (I/O). These memory regions are
detailed as follows:

« The lowest 211 = 2048 addresses of the memory map are reserved for use
by the operating system.

« The user space is where a user’s assembled program is loaded, and can grow
during operation from location 2048 until it meets up with the system
stack.

« The system stack starts at location 23 — 4 and grows toward lower address-
es. The reason for this organization of programs growing upward in mem-
ory and the system stack growing downward can be seen in Figure 4-4: it
accommodates both large programs with small stacks and small programs
with large stacks.

« The portion of the address space between 231 and 232 — 1 is reserved for
I/0O devices—each device has a collection of memory addresses where its
data is stored, which is referred to as “memory mapped 1/0.”

The ARC has several data types (byte, halfword, integer, etc.), but for now we
will consider only the 32-bit integer data type. Each integer is stored in memory
as a collection of four bytes. ARC is a big-endian architecture, so the high-
est-order byte is stored at the lowest address. The largest possible byte address in
the ARC is 232 — 1, so the address of the highest word in the memory map is
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three bytes lower than this, or 232 — 4.

ARC INSTRUCTION SET

As we get into details of the ARC instruction set, let us start by making an over-
view of the CPU:

« The ARC has 32 32-bit general-purpose registers, as well asa PC and an IR.

» There isa Processor Status Register (PSR) that contains information about
the state of the processor, including information about the results of arith-
metic operations. The “arithmetic flags” in the PSR are called the condition
codes. They specify whether a specified arithmetic operation resulted in a
zero value (z), a negative value (n), a carry out from the 32-bit ALU (c),
and an overflow (v). The v bit is set when the results of the arithmetic op-
eration are too large to be handled by the ALU.

« All instructions are one word (32-bits) in size.

e The ARC is a load-store machine: the only allowable memory access oper-
ations load a value into one of the registers, or store a value contained in
one of the registers into a memory location. All arithmetic operations op-
erate on values that are contained in registers, and the results are placed in
a register. There are approximately 200 instructions in the SPARC instruc-
tion set, upon which the ARC instruction set is based. A subset of 15 in-
structions is shown in Figure 4-7. Each instruction is represented by a
mnemonic, which is a name that represents the instruction.

Data Movement Instructions

The first two instructions: | d (load) and st (store) transfer a word between the
main memory and one of the ARC registers. These are the only instructions that
can access memory in the ARC.

The set hi instruction sets the 22 most significant bits (MSBs) of a register with
a 22-bit constant contained within the instruction. It is commonly used for con-
structing an arbitrary 32-bit constant in a register, in conjunction with another
instruction that sets the low-order 10 bits of the register.
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Mhenoni ¢ Meani ng
Memory B I d Load a register from nenory
st Store a register into nenory
[ sethi | Load the 22 nost si gnificant bits of a register
andcc | Bitwi se | ogical AND
Logic orcc | Bitwi se logical OR
orncc | Bitwi se |ogical NOR
srl Shift right (Iogical)
Arithmetic addcc | Add
[ call Cal | subroutine
j mpl Junp and link (return from subroutine call)
be Branch if equal
Control bneg | Branch if negative
bcs Branch on carry
bvs Branch on overfl ow
ba Branch al ways

Figure 4-7 A subset of the instruction set for the ARC ISA.

Arithmetic and Logic Instructions

The andcc, or cc, and or ncc instructions perform a bit-by-bit AND, OR, and
NOR operation, respectively, on their operands. One of the two source operands
must be in a register. The other may either be in a register, or it may be a 13-bit
two’s complement constant contained in the instruction, which is sign extended
to 32-bits when it is used. The result is stored in a register.

For the andcc instruction, each bit of the result is set to 1 if the corresponding
bits of both operands are 1, otherwise the result bit is set to 0. For the orcc
instruction, each bit of the register is 1 if either or both of the corresponding
source operand bits are 1, otherwise the corresponding result bit is set to 0. The
or ncc operation is the complement of or cc, so each bit of the result is O if
either or both of the corresponding operand bits are 1, otherwise the result bit is
set to 1. The “cc” suffixes specify that after performing the operation, the condi-
tion code bits in the PSR are updated to reflect the results of the operation. In
particular, the z bit is set if the result register contains all zeros, the n bit is set if
the most significant bit of the result register is a 1, and the ¢ and v flags are
cleared for these particular instructions. (Why?)

The shift instructions shift the contents of one register into another. The sr|
(shift right logical) instruction shifts a register to the right, and copies zeros into



118

CHAPTER 4

THE INSTRUCTION SET ARCHITECTURE

the leftmost bit(s). The sra (shift right arithmetic) instruction (not shown),
shifts the original register contents to the right, placing a copy of the MSB of the
original register into the newly created vacant bit(s) in the left side of the register.
This results in sign-extending the number, thus preserving its arithmetic sign.

The addcc instruction performs a 32-bit two’s complement addition on its
operands.

Control Instructions

Thecal | andj npl instructions form a pair that are used in calling and return-
ing from a subroutine, respectively. j npl is also used to transfer control to
another part of the program.

The lower five instructions are called conditional branch instructions. The be,
bneg, bcs, bvs, and ba instructions cause a branch in the execution of a pro-
gram. They are called conditional because they test one or more of the condition
code bits in the PSR, and branch if the bits indicate the condition is met. They
are used in implementing high level constructs such as got o, i f-t hen-el se
and do- whi | e. Detailed descriptions of these instructions and examples of their
usages are given in the sections that follow.

ARC ASSEMBLY LANGUAGE FORMAT

Each assembly language has its own syntax. We will follow the SPARC assembly
language syntax, as shown in Figure 4-8. The format consists of four fields: an

Source Destination

Label Mnemonic operands operand Comment
I ¢ 1 [ ¢ 1 [ ¢ 1 V_/| [ ¢ 1
lab_1: addcc %1, %2, %3 I Sanpl e assenbly code

Figure 4-8 Format for a SPARC (as well as ARC) assembly language statement.

optional label field, an opcode field, one or more fields specifying the source and
destination operands (if there are operands), and an optional comment field. A
label consists of any combination of alphabetic or numeric characters, under-
scores (_), dollar signs ($), or periods (. ), as long as the first character is not a
digit. A label must be followed by a colon. The language is sensitive to case, and
so a distinction is made between upper and lower case letters. The language is
“free format” in the sense that any field can begin in any column, but the relative



CHAPTER 4  THE INSTRUCTION SET ARCHITECTURE 119

left-to-right ordering must be maintained.

The ARC architecture contains 32 registers labeled 9% 0 — % 31, that each hold
a 32-bit word. There is also a 32-bit Processor State Register (PSR) that describes
the current state of the processor, and a 32-bit program counter (PC), that
keeps track of the instruction being executed, as illustrated in Figure 4-9. The

Register 00 | %0 [ = 0] Register 11 (% 11 Register 22 | % 22
Register 01 | % 1 Register 12 (% 12 Register 23 | % 23
Register 02 | % 2 Register 13 | % 13 Register 24 | % 24
Register 03 | % 3 Registerl4d (% 14 [ %sp] Register 25 | % 25
Register 04 | % 4 Register 15 (% 15 [ i nk] | Register 26 | % 26
Register 05 | % 5 Register 16 | % 16 Register 27 | % 27
Register 06 | % 6 Register 17 | % 17 Register 28 | 9% 28
Register 07 | % 7 Register 18 | % 18 Register 29 | % 29
Register 08 | % 8 Register 19 (% 19 Register 30 | % 30
Register 09 | % 9 Register 20 | % 20 Register 31 | % 31
Register 10 | % 10 Register 21 | % 21
——32bits— ——32bits—

Figure 4-9  User-visible registers in the ARC.

PSR is labeled %psr and the PC register is labeled %pc. Register % 0 always
contains the value 0, which cannot be changed. Registers % 14 and % 15 have
additional uses as a stack pointer (¥%sp) and a link register, respectively, as
described later.

Operands in an assembly language statement are separated by commas, and the
destination operand always appears in the rightmost position in the operand
field. Thus, the example shown in Figure 4-8 specifies adding registers % 1 and
% 2, with the result placed in % 3. If % O appears in the destination operand
field instead of % 3, the result is discarded. The default base for a numeric oper-
and is 10, so the assembly language statement:;

addcc %1, 12, % 3

shows an operand of (12),, that will be added to % 1, with the result placed in
% 3. Numbers are interpreted in base 10 unless preceded by “0x” or ending in
“H”, either of which denotes a hexadecimal number. The comment field follows
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the operand field, and begins with an exclamation mark ‘! * and terminates at the
end of the line.

ARC INSTRUCTION FORMATS

The instruction format defines how the various bit fields of an instruction are
laid out by the assembler, and how they are interpreted by the ARC control unit.
The ARC architecture has just a few instruction formats. The five formats are:
SETHI, Branch, Call, Arithmetic, and Memory, as shown in Figure 4-10. Each

op
1
3130 29 28 27 26 25 2423 22 21 20 19 1817 16 1514 13 12 11 10 09 08 07 06 05040302 0100
‘ — — ‘ ‘
SETHI For mat ‘0 0‘ ‘ p2 ‘ |m‘r22 ‘
— — — —
Branch For mat ‘0 0‘0‘ cond ‘ op2 ‘ disp22 ‘

3130292827262524232221201918171615141312111009080706050403020100
N B B B B S L \\\\\\\\‘

CALL format |01 ~ disp3o

1
3130292827262524232221201918171615141312111009 0807 060504 03020100

aithmetic (100, rd | ops [ rst 0[00000000] rs2 |
rormats ol rd [ opy [ rst fif 0 simmd
3130 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
1] vd | op3 | fsi JoJo0000000 rs2 |
Menory Formats 7+ 1 71— — T T T T
Y ‘1 1‘ rd ‘ op3 ‘ rsi ‘1‘ si mi3 ‘
op For mat op2| Inst. op3 (op=10) op3 (op=11) cond | branch
00| SETHI / Branch | | 010| branch 010000 addcc| | 000000 Id 0001 | be
01| CALL 100| sethi 010001 andcc| | 000100 st 0101 | bcs
10| Arithnetic 010010 orcc 0110| bneg
11| Menory 010110 orncc 0111 bvs
100110 srl 1000 | ba
111000 j npl

313029 28 27 26 25 2423222120 19 18 1716 1514131211 10 09 08 07 06 05 04 03 02 Ol 00
PSR T T T T T T T T T T T T T T
| [nz]v]e] |

Figure 4-10 Instruction formats and PSR format for the ARC.

instruction has a mnemonic form such as “I d,” and an opcode. A particular
instruction format may have more than one opcode field, which collectively
identify an instruction in one of its various forms. (Note that these four instruc-
tion formats do not directly correspond to the four instruction classifications
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shown in Figure 4-7.)

The leftmost two bits of each instruction form the op (opcode) field, which
identifies the format. The SETHI and Branch formats both contain 00 in the op
field, and so they can be considered together as the SETHI/Branch format. The
actual SETHI or Branch format is determined by the bit pattern in the op2
opcode field (010 = Branch; 100 = SETHI). Bit 29 in the Branch format always
contains a zero. The five-bit r d field identifies the target register for the SETHI
operation.

The cond field identifies the type of branch, based on the condition code bits (n,
z, v, and c) in the PSR, as indicated at the bottom of Figure 4-10. The result of
executing an instruction in which the mnemonic ends with “cc” sets the condi-
tion code bits such that n=1 if the result of the operation is negative; z=1 if the
result is zero; v=1 if the operation causes an overflow; and c=1 if the operation
produces a carry. The instructions that do not end in “cc” do not affect the con-
dition codes. The i 22 and di sp22 fields each hold a 22-bit constant that is
used as the operand for the SETHI format (for i rm22) or for calculating a dis-
placement for a branch address (for di sp22).

The CALL format contains only two fields: the op field, which contains the bit
pattern 01, and the di sp30 field, which contains a 30-bit displacement that is
used in calculating the address of the called routine.

The Arithmetic (op = 10) and Memory (op = 11) formats both make use of
r d fields to identify either a source register for st, or a destination register for
the remaining instructions. The r s1 field identifies the first source register, and
the r s2 field identifies the second source register. The op3 opcode field identi-
fies the instruction according to the op3 tables shown in Figure 4-10.

The si mmL 3 field is a 13-bit immediate value that is sign extended to 32 bits for
the second source when the i (immediate) field is 1. The meaning of “sign
extended” is that the leftmost bit of the si nL3 field (the sign bit) is copied to
the left into the remaining bits that make up a 32-bit integer, before adding it to
rs1 in this case. This ensures that a two’s complement negative number remains
negative (and a two’s complement positive number remains positive). For
instance, (-13)19=(1111111110011),, and after sign extension to a 32-bit inte-
ger, we have (11111111111111111111111111110011), which is still equivalent
to (_13)10.
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The Arithmetic instructions need two source operands and a destination oper-
and, for a total of three operands. The Memory instructions only need two oper-
ands: one for the address and one for the data. The remaining source operand is
also used for the address, however. The operands in the r s1 and r s2 fields are
added to obtain the address wheni = 0. Wheni = 1, then thers1 field and
the si L3 field are added to obtain the address. For the first few examples we
will encounter, 9% 0 will be used for r s2 and so only the remaining source oper-
and will be specified.

ARC DATA FORMATS

The ARC supports 12 different data formats as illustrated in Figure 4-11. The
data formats are grouped into three types: signed integer, unsigned integer, and
floating point. Within these types, allowable format widths are byte (8 bits), half-
word (16 bits), word/singleword (32 bits), tagged word (32 bits, in which the
two least significant bits form a tag and the most significant 30 bits form the
value), doubleword (64 bits), and quadword (128 bits).

In reality, the ARC does not differentiate between unsigned and signed integers.
Both are stored and manipulated as two's complement integers. It is their inter-
pretation that varies. In particular one subset of the branch instructions assumes
that the value(s) being compared are signed integers, while the other subset
assumes they are unsigned. Likewise, the ¢ bit indicates unsigned integer over-
flow, and the v bit, signed overflow.

The tagged word uses the two least significant bits to indicate overflow, in which
an attempt is made to store a value that is larger than 30 bits into the allocated
30 bits of the 32-bit word. Tagged arithmetic operations are used in languages
with dynamically typed data, such as Lisp and Smalltalk. In its generic form, a 1
in either bit of the tag field indicates an overflow situation for that word. The
tags can be used to ensure proper alignment conditions (that words begin on
four-byte boundaries, quadwords begin on eight-byte boundaries, etc.), particu-
larly for pointers.

The floating point formats conform to the IEEE 754-1985 standard (see Chap-
ter 2). There are special instructions that invoke the floating point formats that
are not described here, that can be found in (SPARC, 1992).
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CHAPTER 4
Sgned Formats
Signed I nteger Byte B:l
76 0
Signed Integer Halfword |5|
51 0
Signed Integer Word |5| |
3130 0
Signed Integer Double |5| |
63 62 2
3 0
Unsigned Formats
Unsigned I nteger Byte |:|
7 0
Unsigned Integer Halfword |
[ 0
Unsigned I nteger Word [ |
a 0
Tagged Word [ [ o
a 210
Unsigned I nteger Double L |
63 2
a 0
Floating Point Formats
Floating Point Single |5| exponent | fraction |
3130 3 22 0
Floating Point Double |5| exponent | fraction |
63 62 52 51 2
[ fraction |
a1 0
Floating Point Quad |5| exponent fraction |
127 126 112 113 %
[ fraction |
% 64
[ fraction |
63 2
[ fraction |

31

ARC data formats.

4.2.6 ARC INSTRUCTION DESCRIPTIONS

Now that we know the instruction formats, we can create detailed descriptions of
the 15 instructions listed in Figure 4-7, which are given below. The translation to
object code is provided only as a reference, and is described in detail in the next
chapter. In the descriptions below, a reference to the contents of a memory loca-

tion (for | d and st ) is indicated by square brackets, as in “I d [x],

o% 1”

which copies the contents of location x into % 1. A reference to the address of a
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memory location is specified directly, without brackets, as in “cal I sub_r,”
which makes a call to subroutine sub_r. Only I d and st can access memory,
therefore only | d and st use brackets. Registers are always referred to in terms of
their contents, and never in terms of an address, and so there is no need to
enclose references to registers in brackets.

Instruction: | d

Description: Load a register from main memory. The memory address must be aligned
on a word boundary (that is, the address must be evenly divisible by 4). The address is
computed by adding the contents of the register in the r s1 field to either the contents of
the register in the r s 2 field or the value in the si nm1L 3 field, as appropriate for the con-
text.

Example usage: 1d [x], %1
or ld [x], %0, %1
or ld % 0+x, %1
Meaning: Copy the contents of memory location x into register % 1.
Obiject code: 11000010000000000010100000010000 (x = 2064)

Instruction: st

Description: Store a register into main memory. The memory address must be aligned
on a word boundary. The address is computed by adding the contents of the register in
the r s1 field to either the contents of the register in the r s2 field or the value in the
si mml 3 field, as appropriate for the context. The r d field of this instruction is actually
used for the source register.

Example usage: st %1, [X]
Meaning: Copy the contents of register % 1 into memory location X.
Object code: 11000010001000000010100000010000  (x = 2064)

Instruction: set hi

Description: Set the high 22 bits and zero the low 10 bits of a register. If the operand is
0 and the register is % O, then the instruction behaves as a no-op (NOP), which means
that no operation takes place.

Example usage: set hi 0x304F15, % 1
Meaning: Set the high 22 bits of % 1 to (304F15),4, and set the low 10 bits to zero.
Object code: 00000011001100000100111100010101

Instruction: andcc

Description: Bitwise AND the source operands into the destination operand. The con-
dition codes are set according to the result.

Example usage: andcc %1, %2, % 3
Meaning: Logically AND % 1 and % 2 and place the result in % 3.
Obiject code: 10000110100010000100000000000010
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Instruction: or cc

Description: Bitwise OR the source operands into the destination operand. The condi-
tion codes are set according to the result.

Example usage: orcc %1, 1, %1
Meaning: Set the least significant bit of % 1 to 1.
Object code: 10000010100100000110000000000001

Instruction: or ncc

Description: Bitwise NOR the source operands into the destination operand. The con-
dition codes are set according to the result.

Example usage: orncc %1, %0, %1
Meaning: Complement % 1.
Obiject code: 10000010101100000100000000000000

Instruction: sr |

Description: Shift a register to the right by 0 — 31 bits. The vacant bit positions in the
left side of the shifted register are filled with 0.

Example usage: srl 9% 1, 3, %2

Meaning: Shift % 1 right by three bits and store in % 2. Zeros are copied into the three
most significant bits of % 2.

Object code: 10000101001100000110000000000011

Instruction: addcc

Description: Add the source operands into the destination operand using two’s comple-
ment arithmetic. The condition codes are set according to the result.

Example usage: addcc %1, 5, %1

Meaning: Add 5to % 1.

Object code: 10000010100000000110000000000101

Instruction: cal |

Description: Call a subroutine and store the address of the current instruction (where
the call itself is stored) in % 15, which effects a “call and link” operation. In the assem-
bled code, the di sp30 field in the CALL format will contain a 30-bit displacement
from the address of the cal | instruction. The address of the next instruction to be exe-
cuted is computed by adding 4 x di sp30 (which shifts di sp30 to the high 30 bits of
the 32-bit address) to the address of the current instruction. Note that di sp30 can be
negative.

Example usage: cal |l sub_r

Meaning: Call a subroutine that begins at location sub_r . For the object code shown
below, sub_r is 25 words (100 bytes) farther in memory than the call instruction.

Object code: 01000000000000000000000000011001

Instruction: j npl
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Description: Jump and link (return from subroutine). Jump to a new address and store
the address of the current instruction (where the j mpl instruction is located) in the des-
tination register.

Example usage: jnmpl %15 + 4, %0

Meaning: Return from subroutine. The value of the PC for the call instruction was pre-
viously saved in % 15, and so the return address should be computed for the instruction
that follows the call, at % 15 + 4. The current address is discarded in % O.

Obiject code: 10000001110000111110000000000100

Instruction: be

Description: If the z condition code is 1, then branch to the address computed by add-
ing 4 x di sp22 in the Branch instruction format to the address of the current instruc-
tion. If the z condition code is O, then control is transferred to the instruction that
follows be.

Example usage: be | abel

Meaning: Branch to | abel if the z condition code is 1. For the object code shown
below, I abel is five words (20 bytes) farther in memory than the be instruction.

Object code: 00000010100000000000000000000101

Instruction: bneg

Description: If the n condition code is 1, then branch to the address computed by add-
ing 4 x di sp22 in the Branch instruction format to the address of the current instruc-
tion. If the n condition code is O, then control is transferred to the instruction that
follows bneg.

Example usage: bneg | abel

Meaning: Branch to | abel if the n condition code is 1. For the object code shown
below, I abel is five words farther in memory than the bneg instruction.

Obiject code: 00001100100000000000000000000101

Instruction: bcs

Description: If the ¢ condition code is 1, then branch to the address computed by add-
ing 4 x di sp22 in the Branch instruction format to the address of the current instruc-
tion. If the ¢ condition code is O, then control is transferred to the instruction that
follows bcs.

Example usage: bcs | abel

Meaning: Branch to | abel if the ¢ condition code is 1. For the object code shown
below, I abel is five words farther in memory than the bcs instruction.

Obiject code: 00001010100000000000000000000101

Instruction: bvs

Description: If the v condition code is 1, then branch to the address computed by add-
ing 4 x di sp22 in the Branch instruction format to the address of the current instruc-
tion. If the v condition code is O, then control is transferred to the instruction that
follows bvs.
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Example usage: bvs [ abel

Meaning: Branch to | abel if the v condition code is 1. For the object code shown
below, | abel is five words farther in memory than the bvs instruction.

Object code: 00001110100000000000000000000101

Instruction: ba

Description: Branch to the address computed by adding 4 x di sp22 in the Branch
instruction format to the address of the current instruction.

Example usage: ba | abel

Meaning: Branch to | abel regardless of the settings of the condition codes. For the
object code shown below, | abel is five words earlier in memory than the ba instruc-
tion.

Obiject code: 000100001011111111121111111111011

In addition to the ARC instructions that are supported by the architecture, there
are also pseudo-operations (pseudo-ops) that are not opcodes at all, but rather
instructions to the assembler to perform some action at assembly time. A list of
pseudo-ops and examples of their usages are shown in Figure 4-12. Note that

Pseudo-Op Usage Meaning

. equ X .equ #10 Treat symbol X as (10)4¢

. begin . begin Start assembling

.end . end Stop assembling

.org .org 2048 Change location counter to 2048

. dwb .dwb 25 Reserve ablock of 25 words

. gl obal .global Y Y is used in another module

.extern .extern Z Z isdefined in another module

. macro .macro Ma, b, ... Define macroMwithformal
parametersa, b, ...

. endmacr o . endmacr o End of macro definition

i f .if <cond> Assembleif <cond> istrue

.endi f .endi f Endof . i f construct

Figure 4-12  Pseudo-ops for the ARC assembly language.
unlike processor opcodes, which are specific to a given machine, the kind and

nature of the pseudo-ops are specific to a given assembler, because they are exe-
cuted by the assembler itself.

The . equ pseudo-op instructs the assembler to equate a value or a character
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string with a symbol, so that the symbol can be used throughout a program as if
the value or string is written in its place. The . begi n and . end pseudo-ops tell
the assembler when to start and stop assembling. Any statements that appear
before . begi n or after . end are ignored. A single program may have more than
one . begi n/ . end pair, but there must be a . end for every . begi n, and there
must be at least one . begi n. The use of . begi n and . end are helpful in mak-
ing portions of the program invisible to the assembler during debugging.

The . or g (origin) pseudo-op causes the next instruction to be assembled with
the assumption it will be placed in the specified memory location at runtime
(location 2048 in Figure 4-12.) The . dwb (define word block) pseudo-op
reserves a block of four-byte words, typically for an array. The location counter
(which keeps track of which instruction is being assembled by the assembler) is
moved ahead of the block according to the number of words specified by the
argument to . dwb multiplied by 4.

The . gl obal and . extern pseudo-ops deal with names of variables and
addresses that are defined in one assembly code module and are used in another.
The . gl obal pseudo-op makes a label available for use in other modules. The
. ext er n pseudo-op identifies a label that is used in the local module and is
defined in another module (which should be marked with a . gl obal in that
module). We will see how . gl obal and . ext er n are used when linking and
loading are covered in the next chapter. The . macro, . endnmacro, .if, and
. endi f pseudo-ops are also covered in the next chapter.

The process of writing an assembly language program is similar to the process of
writing a high-level program, except that many of the details that are abstracted
away in high-level programs are made explicit in assembly language programs. In
this section, we take a look at two examples of ARC assembly language programs.

Program: Add Two Integers.

Consider writing an ARC assembly language program that adds the integers 15
and 9. One possible coding is shown in Figure 4-13. The program begins and
ends with a . begi n/ . end pair. The . or g pseudo-op instructs the assembler to
begin assembling so that the assembled code is loaded into memory starting at
location 2048. The operands 15 and 9 are stored in variables x and y, respec-
tively. We can only add numbers that are stored in registers in the ARC (because
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I This progranms adds two nunbers
. begin
.org 2048

progl: Id [x], w1 I Load x into %1
I d [yl, %2 ! Load y into % 2
addcc %1, %2, %3 I %3 « %1l + %2
st %3, [z] | Store %3 into z
j mpl %15 + 4, %O I Return

X: 15

y: 9

z: 0
.end

Figure 4-13  An ARC assembly language program adds two integers.

only | d and st can access main memory), and so the program begins by loading
registers % 1 and % 2 with x and y. The addcc instruction adds % 1 and % 2
and places the result in 9% 3. The st instruction then stores % 3 in memory
location z. The j npl instruction with operands % 15 + 4, % O causes a
return to the next instruction in the calling routine, which is the operating sys-
tem if this is the highest level of a user’s program as we can assume it is here. The
variables x, y, and z follow the program.

In practice, the SPARC code equivalent to the ARC code shown in Figure 4-13 is
not entirely correct. The 1d, st, and j npl instructions all take at least two
instruction cycles to complete, and since SPARC begins a new instruction at
each clock tick, these instructions need to be followed by an instruction that does
not rely on their results. This property of launching a new instruction before the
previous one has completed is called pipelining, and is covered in more detail in
Chapter 9.

Program: Sum an Array of Integers

Now consider a more complex program that sums an array of integers. One pos-
sible coding is shown in Figure 4-14. As in the previous example, the program
begins and ends with a . begi n/ . end pair. The . or g pseudo-op instructs the
assembler to begin assembling so that the assembled code is loaded into memory
starting at location 2048. A pseudo-operand is created for the symbol a_st ar t
which is assigned a value of 3000.

The program begins by loading the length of array a, which is given in bytes,
into % 1. The program then loads the starting address of array a into % 2, and
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! This program suns LENGTH nunbers

! Register usage: % 1 — Length of array a

! % 2 — Starting address of array a
! % 3 — The partial sum

! % 4 — Pointer into array a

! %5 — Holds an elenent of a

. begin | Start assenbling
.org 2048 ! Start program at 2048
a_start .equ 3000 ! Address of array a
I d [length], %1 ! %1 « length of array a
Id [address], %2 ! %2 « address of a
andcc %3, %0, %3 ! %3 « O
| oop: andcc W1, %1, %0 ! Test # renmining elenents
be done ! Finished when | ength=0
addcc %1, -4, %1 ! Decrement array |length
addcc %1, %2, %4 ! Address of next elenent
I d % 4, %5 I %5 < Menory[ % 4]
addcc %3, %5, %3 ! Sumnew element into r3
ba | oop ! Repeat |oop.
done: jmpl %15 + 4, %0 ! Return to calling routine
| engt h: 20 ! 5 nunbers (20 bytes) in a
addr ess: a_start
.org a_start ! Start of array a
a: 25 ! length/4 values follow
-10
33
-5
7
. end ! Stop assenbling

Figure 4-14 An ARC program sums five integers.

clears % 3 which will hold the partial sum. Register % 3 is cleared by ANDing it
with % 0, which always holds the value 0. Register % 0 can be ANDed with any
register for that matter, and the result will still be zero.

The label | oop begins a loop that adds successive elements of array a into the
partial sum (% 3) on each iteration. The loop starts by checking if the number of
remaining array elements to sum (% 1) is zero. It does this by ANDing % 1 with
itself, which has the side effect of setting the condition codes. We are interested
in the z flag, which will be setto 1 if % 1 = 0. The remaining flags (n, v, and c)
are set accordingly. The value of z is tested by making use of the be instruction.
If there are no remaining array elements to sum, then the program branches to
done which returns to the calling routine (which might be the operating system,
if this is the top level of a user program).

If the loop is not exited after the test for % 1 = 0, then % 1 is decremented by
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the width of a word in bytes (4) by adding —4. The starting address of array a
(which is stored in % 2) and the index into a (% 1) are added into % 4, which
then points to a new element of a. The element pointed to by % 4 is then loaded
into % 5, which is added into the partial sum (% 3). The top of the loop is then
revisited as a result of the “ba | oop” statement. The variable | engt h is stored
after the instructions. The five elements of array a are placed in an area of mem-
ory according to the argument to the . or g pseudo-op (location 3000).

Notice that there are three instructions for computing the address of the next
array element, given the address of the top element in % 2, and the length of the
array in bytes in % 1:

addcc %1, -4, %1 | Point to next elenent to be added
addcc %1, %2, %4 ! Add it to the base of the array
Id %4, %5 I Load the next elenent into %5.

This technique of computing the address of a data value as the sum of a base plus
an index is so frequently used that the ARC and most other assembly languages
have special “addressing modes” to accomplish it. In the case of ARC, the | d
instruction address is computed as the sum of two registers or a register plus a
13-bit constant. Recall that register % 0 always contains the value zero, so by
specifying 9% 0 which is being done implicitly in the | d line above, we are wast-
ing an opportunity to have the | d instruction itself perform the address calcula-
tion. A single register can hold the operand address, and we can accomplish in
two instructions what takes three instructions in the example:

addcc %1, -4, %1 | Point to next elenent to be added
ld %1 + %2, %5 | Load the next elenent into %5.

Notice that we also save a register, % 4, which was used as a temporary place
holder for the address.

VARIATIONS IN MACHINE ARCHITECTURES AND ADDRESSING

The ARC is typical of a load/store computer. Programs written for load/store
machines generally execute faster, in part due to reducing CPU-memory traffic
by loading operands into the CPU only once, and storing results only when the
computation is complete. The increase in program memory size is usually con-
sidered to be a worthwhile price to pay.



132

CHAPTER 4

THE INSTRUCTION SET ARCHITECTURE

Such was not the case when memories were orders of magnitude more expensive
and CPUs were orders of magnitude smaller, as was the situation earlier in the
computer age. Under those earlier conditions, for CPUs that had perhaps only a
single register to hold arithmetic values, intermediate results had to be stored in
memory. Machines had three-address, two-address, and one-address arith-
metic instructions. By this we mean that an instruction could do arithmetic with
3, 2, or 1 of its operands or results in memory, as opposed to the ARC, where all
arithmetic and logic operands must be in registers.

Let us consider how the C expression A = B*C + D might be evaluated by each of
the three- two- and one-address instruction types. In the examples below, when
referring to a variable “A,” this actually means “the operand whose address is A.”
In order to calculate some performance statistics for the program fragments
below we will make the following assumptions:

» Addresses and data words are 16-bits —a not uncommon size in earlier ma-
chines.

e Opcodes are 8-bits in size.
« Operands and opcodes are moved to and from memory one word at a time.

We will compute both program size, in bytes, and program memory traffic with
these assumptions.

Memory traffic has two components: the code itself, which must be fetched from
memory to the CPU in order to be executed, and the data values—operands
must be moved into the CPU in order to be operated upon, and results moved
back to memory when the computation is complete. Observing these computa-
tions allows us to visualize some of the trade-offs between program size and
memory traffic that the various instruction classes offer.

Three-Address Instructions

In a three-address instruction, the expression A = B*C + D might be coded as:

which means multiply B by C and store the result at A. (The nul t and add
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operations are generic; they are not ARC instructions.) Then, add D to A (at this
point in the program, A holds the temporary result of multiplying B times C)
and store the result at address A. The program size is 7x2 or 14 bytes. Memory
traffic is 16 + 2x(2x3) or 28 bytes.

Two Address Instructions

In a two-address instruction, one of the operands is overwritten by the result.
Here, the code for the expression A=B*C + D is:

load B, A
milt C A
add D, A

The program size is now 3x(3x2) or 18 bytes. Memory traffic is 18 + 2x2 +
2x2x3 or 34 bytes.

One Address, or Accumulator Instructions

A one-address instruction employs a single arithmetic register in the CPU,
known as the accumulator. The accumulator typically holds one arithmetic
operand, and also serves as the target for the result of an arithmetic operation.
The one-address format is not in common use these days, but was more common
in the early days of computing when registers were more expensive and fre-
quently served multiple purposes. It serves as temporary storage for one of the
operands and also for the result. The code for the expression A = B*C + D is
now:

load B
mult C
add D
store A

The | oad instruction loads B into the accumulator, mul t multiplies C by the
accumulator and stores the result in the accumulator, and add does the corre-
sponding addition. The st or e instruction stores the accumulator in A. The pro-
gram size is now 2x2x4 or 16 bytes, and memory traffic is 16 + 4x2 or 24 bytes.
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Special-Purpose Registers

In addition to the general-purpose registers and the accumulator described
above, most modern architectures include other registers that are dedicated to
specific purposes. Examples include

« Memory index registers: The Intel 80x86 Source Index (SI) and Destina-
tion Index (DI) registers. These are used to point to the beginning or end
of an array in memory. Special “string” instructions transfer a byte or a
word from the starting memory location pointed to by Sl to the ending
memory location pointed to by DI, and then increment or decrement these
registers to point to the next byte or word.

* Floating point registers: Many current-generation processors have special
registers and instructions that handle floating point numbers.

« Registers to support time, and timing operations: The PowerPC 601 pro-
cessor has Real-Time Clock registers that provide a high-resolution mea-
sure of real time for indicating the date and the time of day. They provide
a range of approximately 135 years, with a resolution of 128 ns.

* Registers in support of the operating system: most modern processors have
registers to support the memory system.

« Registers that can be accessed only by “privileged instructions,” or when in
“Supervisor mode.” In order to prevent accidental or malicious damage to
the system, many processors have special instructions and registers that are
unavailable to the ordinary user and application program. These instruc-
tions and registers are used only by the operating system.

PERFORMANCE OF INSTRUCTION SET ARCHITECTURES

While the program size and memory usage statistics calculated above are
observed out of context from the larger programs in which they would be con-
tained, they do show that having even one temporary storage register in the CPU
can have a significant effect on program performance. In fact, the Intel Pentium
processor, considered among the faster of the general-purpose CPUs, has only a
single accumulator, though it has a number of special-purpose registers that sup-
port it. There are many other factors that affect real-world performance of an
instruction set, such as the time an instruction takes to perform its function, and
the speed at which the processor can run.
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Up to this point, we have seen four ways of computing the address of a value in
memory: (1) a constant value, known at assembly time, (2) the contents of a reg-
ister, (3) the sum of two registers, and (4) the sum of a register and a constant.

Addressing Mode Syntax Meaning
Immediate #K K

Direct K M[K]

Indirect (K) M[MIK]]
Register Indirect (Rn) M[RnN]

Register Indexed (Rm + Rn) M[Rm + Rn]
Register Based (Rm + X) M[Rm + X]
Register Based Indexed | (Rm + Rn + X) M[Rm + Rn + X]

Table 4.1 Addressing Modes

Table 4.1 gives names to these addressing modes, and shows a few others as well.
Notice that the syntax of the table differs from that of the ARC. This is a com-
mon, unfortunate feature of assembly languages: each one differs from the rest in
its syntax conventions. The notation M[x] in the Meaning column assumes
memory is an array, M, whose byte index is given by the address computation in
brackets. There may seem to be a bewildering assortment of addressing modes,
but each has its usage:

« Immediate addressing allows a reference to a constant that is known at as-
sembly time.

« Direct addressing is used to access data items whose address is known at as-
sembly time.

* Indirect addressing is used to access a pointer variable whose address is
known at compile time. This addressing mode is seldom supported in mod-
ern processors because it requires two memory references to access the op-
erand, making it a complicated instruction. Programmers who wish to
access data in this form must use two instructions, one to access the pointer
and another to access the value to which it refers. This has the beneficial
side effect of exposing the complexity of the addressing mode, perhaps dis-
couraging its use.
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* Register indirect addressing is used when the address of the operand is not
known until run time. Stack operands fit this description, and are accessed
by register indirect addressing, often in the form of push and pop instruc-
tions that also decrement and increment the register respectively.

« Register indexed, register based, and register based indexed addressing are
used to access components of arrays such as the one in Figure 4-14, and
components buried beneath the top of the stack, in a data structure known
as the stack frame, which is discussed in the next section.

A subroutine, sometimes called a function or procedure, is a sequence of
instructions that is invoked in a manner that makes it appear to be a single
instruction in a high level view. When a program calls a subroutine, control is
passed from the program to the subroutine, which executes a sequence of
instructions and then returns to the location just past where it was called. There
are a number of methods for passing arguments to and from the called routine,
referred to as calling conventions. The process of passing arguments between
routines is referred to as subroutine linkage.

One calling convention simply places the arguments in registers. The code in
Figure 4-15 shows a program that loads two arguments into % 1 and % 2, calls

I Called routine
I %3 - %1 + %2

I Calling routine

I d [x], %1

I d [yl], %2 add_1: addcc w1, %2, %3
call add_1 j mpl %15 + 4, %O
st %3, [z]

x: 53

y: 10

z: 0

Figure 4-15 Subroutine linkage using registers.

subroutine add_1, and then retrieves the result from % 3. Subroutine add_1
takes its operands from % 1 and % 2, and places the result in % 3 before return-
ing via the j npl instruction. This method is fast and simple, but it will not work
if the number of arguments that are passed between the routines exceeds the
number of free registers, or if subroutine calls are deeply nested.
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A second calling convention creates a data link area. The address of the data link
area is passed in a predetermined register to the called routine. Figure 4-16 shows

I Calling routine ! Called routine
I x[2] <« x[0] + x[1]
st %1, [X] add_2: |Id %5, %8
st % 2, [x+4] | d %5 + 4, %9
sethi x, %5 addcc %8, %9, % 10
srl %5, 10, %5 st % 10, %5 + 8
call add_2 j mpl %15 + 4, %O

Id [x+8], %3

! Data link area
X: .dwb 3

Figure 4-16  Subroutine linkage using a data link area.

an example of this method of subroutine linkage. The . dwb pseudo-op in the
calling routine sets up a data link area that is three words long, at addresses x,
x+4, and x+8. The calling routine loads its two arguments into x and x+4, calls
subroutine add_2, and then retrieves the result passed back from add_2 from
memory location x+8. The address of data link area x is passed to add_2 in reg-
ister 9 5.

Note that set hi must have a constant for its source operand, and so the assem-
bler recognizes the set hi construct shown for the calling routine and replaces x
with its address. The sr | that follows the set hi moves the address x into the
least significant 22 bits of % 5, since set hi places its operand into the leftmost
22 bits of the target register. An alternative approach to loading the address of x
into 9% 5 would be to use a storage location for the address of x, and then simply
apply the | d instruction to load the address into % 5. While the latter approach
is simpler, the set hi / sr1 approach is faster because it does not involve a time
consuming access to the memory.

Subroutine add_2 reads its two operands from the data link area at locations
% 5and % 5 + 4, and places its result in the data link area at location % 5 +
8 before returning. By using a data link area, arbitrarily large blocks of data can
be passed between routines without copying more than a single register during
subroutine linkage. Recursion can create a burdensome bookkeeping overhead,
however, since a routine that calls itself will need several data link areas. Data link
areas have the advantage that their size can be unlimited, but also have the disad-
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vantage that the size of the data link area must be known at assembly time.

A third calling convention uses a stack. The general idea is that the calling rou-
tine pushes all of its arguments (or pointers to arguments, if the data objects are
large) onto a last-in-first-out stack. The called routine then pops the passed argu-
ments from the stack, and pushes any return values onto the stack. The calling
routine then retrieves the return value(s) from the stack and continues execution.
A register in the CPU, known as the stack pointer, contains the address of the
top of the stack. Many machines have push and pop instructions that automat-
ically decrement and increment the stack pointer as data items are pushed and

popped.

An advantage of using a stack is that its size grows and shrinks as needed. This
supports arbitrarily deep nesting of procedure calls without having to declare the
size of the stack at assembly time. An example of passing arguments using a stack
is shown in Figure 4-17. Register % 14 serves as the stack pointer (%sp) which is

! Called routine
! Argunents are on stack.

I Calling routine

. I %p[0] ~ %p[0] + Ysp[4]
%p .equ % 14 %8p .equ % 14

addcc %p, -4, %p  add_3: Id %sp, W8

st % 1, Ysp addcc 9%sp, 4, Y%p

addcc %p, -4, Y%p Id %sp, W9

st % 2, Ysp addcc %8, %9, % 10

call add_3 st % 10, Y%sp

Id  %p, %3 jmpl %15 + 4, %0

addcc %sp, 4, Y%p

Figure 4-17  Subroutine linkage using a stack.

initialized by the operating system prior to execution of the calling routine. The
calling routine places its arguments (% 1 and % 2) onto the stack by decrement-
ing the stack pointer (which moves % p to the next free word above the stack)
and by storing each argument on the new top of the stack. Subroutine add_3 is
called, which pops its arguments from the stack, performs an addition operation,
and then stores its return value on the top of the stack before returning. The call-
ing routine then retrieves its argument from the top of the stack and continues
execution.

For each of the calling conventions, the cal | instruction is used, which saves the
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current PC in % 15. When a subroutine finishes execution, it needs to return to
the instruction that follows the call, which is one word (four bytes) past the saved
PC. Thus, the statement “j npl % 15 + 4, % 0” completes the return. If the
called routine calls another routine, however, then the value of the PC that was
originally saved in % 15 will be overwritten by the nested call, which means that
a correct return to the original calling routine through % 15 will no longer be
possible. In order to allow nested calls and returns, the current value of % 15
(which is called the link register) should be saved on the stack, along with any
other registers that need to be restored after the return.

If a register based calling convention is used, then the link register should be
saved in one of the unused registers before a nested call is made. If a data link
area is used, then there should be space reserved within it for the link register. If a
stack scheme is used, then the link register should be saved on the stack. For each
of the calling conventions, the link register and the local variables in the called
routines should be saved before a nested call is made, otherwise, a nested call to
the same routine will cause the local variables to be overwritten.

There are many variations to the basic calling conventions, but the stack-ori-
ented approach to subroutine linkage is probably the most popular. When a
stack based calling convention is used that handles nested subroutine calls, a
stack frame is built that contains arguments that are passed to a called routine,
the return address for the calling routine, and any local variables. A sample high
level program is shown in Figure 4-18 that illustrates nested function calls. The
operation that the program performs is not important, nor is the fact that the C
programming language is used, but what is important is how the subroutine calls
are implemented.

The behavior of the stack for this program is shown in Figure 4-19. The main
program calls f unc_1 with arguments 1 and 2, and then calls f unc_2 with
argument 10 before finishing execution. Function f unc_1 has two local vari-
ablesi andj that are used in computing the return value j . Function f unc_2
has two local variables mand n that are used in creating the arguments to pass
through to f unc_1 before returning m

The stack pointer (% 14 by convention, which will be referred to as %sp) is ini-
tialized before the program starts executing, usually by the operating system. The
compiler is responsible for implementing the calling convention, and so the
compiler produces code for pushing parameters and the return address onto the
stack, reserving room on the stack for local variables, and then reversing the pro-
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Ll\;ge/* C program showi ng nested subroutine calls */

00 nmin()

01 {

02 int w z; /* Local variables */

03 w = func_1(1,2); /* Call subroutine func_1 */
04 z = func_2(10); /* Call subroutine func_2 */
05 } /* End of main routine */

06 int func_1(x,y) /* Conpute x * x + vy */

07 int x, vy; /* Paraneters passed to func_1 */
08 {

09 int i, j; /* Local variables */

10 i = x * Xx;

11 i =i o+y;

12 return(j); /* Return j to calling routine */
13 }

14 int func_2(a) /* Conpute a * a + a + 5 */

15 int a; /* Paraneter passed to func_2 */
16 {

17 int m n; /* Local variables */

18 n=a+ 5

19 m = func_1(a, n);

20 return(m; /* Return mto calling routine */
21 }

Figure 4-18 A C program illustrating nested function calls.

cess as routines return from their calls. The stack behavior shown in Figure 4-19
is thus produced as the result of executing compiler generated code, but the code
may just as well have been written directly in assembly language.

As the main program begins execution, the stack pointer points to the top ele-
ment of the system stack (Figure 4-19a). When the main routine calls f unc_1 at
line 03 of the program shown in Figure 4-18 with arguments 1 and 2, the argu-
ments are pushed onto the stack, as shown in Figure 4-19b. Control is then
transferred to f unc_1 through a cal | instruction (not shown), and f unc_1
then saves the return address, which is in % 15 as a result of the cal | instruc-
tion, onto the stack (Figure 4-19c). Stack space is reserved for local variables i

and j of func_1 (Figure 4-19d). At this point, we have a complete stack frame
for the f unc_1 call as shown in Figure 4-19d, which is composed of the argu-
ments passed to f unc_1, the return address to the main routine, and the local
variables for f unc_1.

Just prior to f unc_1 returning to the calling routine, it releases the stack space
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0 o — ool
Beginning
Free area of stack Freearea
Free area frame
Ysp > % 15
%sp 2 2
Y%sp— L L
Stack Stack Stack
232_ 232_ 232_
4 @ 4 (b) 4 ©
Initial configuration. Calling routine pushes After the call, called
wand z are already on the arguments onto stack, routine saves PC of calling

stack. (Line 00 of program.)

priortof unc_1 call.
(Line 03 of program.)

routine (% 15) onto stack.
(Line 06 of program.)

0 OB E— OB —
Stack
frame for
Free area func_1
Y8p - ] Frecarea Free area
i
% 15
2 0,
1 sp - 3 Ysp >
Stack Stack Stack
282_ ., 232_ ., 232_ .,
4 (d) 4 C 4 ®
Stack spaceisreserved for Return value from Calling routine pops

func_1 local variablesi
andj . (Line 09 of
program.)

func_1 isplaced on
stack, just prior to return.
(Line 12 of program.)

f unc_1 return value
from stack. (Line 03 of
program.)

Figure 4-19  (a-f) Stack behavior during execution of the program shown in Figure 4-18.

for its local variables, retrieves the return address from the stack, releases the stack
space for the arguments passed to it, and then pushes its return value onto the
stack as shown in Figure 4-19e. Control is then returned to the calling routine
through a j npl instruction, and the calling routine is then responsible for
retrieving the returned value from the stack and decrementing the stack pointer
to its position from before the call, as shown in Figure 4-19f. Routine f unc_2 is
then executed, and the process of building a stack frame starts all over again as
shown in Figure 4-19g. Since f unc_2 makes a call to f unc_1 before it returns,
there will be stack frames for both f unc_2 and f unc_1 on the stack at the same
time as shown in Figure 4-19h. The process then unwinds as before, finally
resulting in the stack pointer at its original position as shown in Figure 4-19(i-k).
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Figure 4-19 (g-k) (Continued.)

Finally, we come to ways in which an assembly language program can communi-
cate with the outside world: input and output (I/O) activities. One way that
communication between 1/0O devices and the rest of the machine can be handled
is with special instructions, and with a special 1/O bus reserved for this purpose.
An alternative method for interacting with 1/0O devices is through the use of
memory mapped I/O, in which devices occupy sections of the address space
where no ordinary memory exists. Devices are accessed as if they are memory
locations, and so there is no need for handling devices with new instructions.

As an example of memory mapped 1/0O, consider again the memory map for the
ARC, which is illustrated in Figure 4-20. We see a few new regions of memory,



CHAPTER 4  THE INSTRUCTION SET ARCHITECTURE

Address Data
32 hits
0—> 1
Reserved for built-in
bootstrap and graphics
routines

216 —>
Add-in video memory #1

217 —>
Add-in video memory #2

219
e U numd/

222 >

Working Memory

Top of stack l<— Stack pointer

System Stack
223_4 > Bottom of stack

FFFFEC,s Screen Flash
FFFFFO.¢ Touchscreenx —> 1/0O space
FFFFF446 Touchscreeny 7|

224 _ 4 —>

<> T

byte 21’4

Figure 4-20 Memory map for the ARC, showing memory mapping.

for two add-in video memory modules and for a touchscreen. A touchscreen
comes in two forms, photonic and electrical. An illustration of the photonic ver-
sion is shown in Figure 4-21. A matrix of beams covers the screen in the horizon-

LEDs —
(sources)

| User breaks
beams

Tl
Detector

Figure 4-21 A user selecting an object on a touchscreen.

tal and vertical dimensions. If the beams are interrupted (by a finger for example)
then the position is determined by the interrupted beams. (In an alternative ver-
sion of the touchscreen, the display is covered with a touch sensitive surface. The
user must make contact with the screen in order to register a selection.)

143
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The only real memory occupies the address space between 222 and 223 — 1.
(Remember: 223 _ 4 s the address of the leftmost byte of the highest word in the
big-endian format.) The rest of the address space is occupied by other compo-
nents. The address space between 0 and 216 — 1 (inclusive) contains built-in pro-
grams for the power-on bootstrap operation and basic graphics routines. The
address space between 216 and 21° — 1 is used for two add-in video memory
modules, which we will study in Problem Figure 4.3. Note that valid informa-
tion is available only when the add-in memory modules are physically inserted
into the machine.

223 224

Finally, the address space between and — 1 is used for 1/O devices. For
this system, the X and Y coordinates that mark the position where a user has
made a selection are automatically updated in registers that are placed in the
memory map. The registers are accessed by simply reading from the memory
locations where these registers are located. The “Screen Flash” location causes the
screen to flash whenever it is written.

Suppose that we would like to write a simple program that flashes the screen
whenever the user changes position. The flowchart in Figure 4-22 illustrates how
this might be done. The X and Y registers are first read, and are then compared
with the previous X and Y values. If either position has changed, then the screen
is flashed and the previous X and Y values are updated and the process repeats. If
neither position has changed, then the process simply repeats. This is an example
of the programmed 1I/O method of accessing a device. (See problem 4.3 at the
end of the chapter for a more detailed description.)

Java is a high-level programming language developed by Sun Microsystems that
has taken a prominent position in the programming community. A key aspect of
Java is that Java binary codes are platform-independent, which means that the
same compiled code can run without modification on any computer that sup-
ports the Java Virtual Machine (JVM). The JVM is how Java achieves its plat-
form-independence: a standard specification of the JVM is implemented in the
native instruction sets of many underlying machines, and compiled Java codes
can then run in any JVM environment.

Programs that are written in fully compiled languages like C, C++, and Fortran,
are compiled into the native code of the target architecture, and are generally not
portable across platforms unless the source code is recompiled for the target



CHAPTER 4  THE INSTRUCTION SET ARCHITECTURE 145

Read X register.
Read Y register.

Compareold X and Y
values to new values

NO " bidX or Y

change?

Yes

Flash screen

Update X and Y
registers

Figure 4-22  Flowchart illustrating the control structure of a program that tracks a touchscreen.

machine. Interpreted languages, like Perl, Tcl, AppleScript, and shell script, are
largely platform independent, but can execute 100 to 200 times slower than a
fully compiled language. Java programs are compiled into an intermediate form
known as bytecodes, which execute on the order of 10 times more slowly than
fully compiled languages, but the cross-platform compatibility and other lan-
guage features make Java a favorable programming language for many applica-
tions.

A high level view of the JVM architecture is shown in Figure 4-23. The VM is a
stack-based machine, which means that the operands are pushed and popped
from a stack, instead of being transferred among general purpose registers. There
are, however, a number of special purpose registers, and also a number of local
variables that serve the function of general purpose registers in a “real” (non-vir-
tual) architecture. The Java Execution Engine takes compiled Java bytecodes at
its input, and interprets the bytecodes in a software implementation of the JVM,
or executes the bytecodes directly in a hardware implementation of the JVM.
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32 bits Byte Codes

\4

Java Stack 0 l

32 bits

Operand stack

Local variables

8 bits Java Execution Engine
0
Constant pool — | Stack top index
65,585 Thread state

State variables

|
|
Current method pointer |
|

Registers

Current method’s constant pool pointerl

Stack frame pointer |

|
|
|
| Current method'’s class pointer
|
|
|

Program counter |

Figure 4-23  Architecture of the Java virtual machine.

Figure 4-24 shows a Java implementation of the SPARC program we studied in
Figure 4-13. The figure shows both the Java source program and the bytecodes
into which it was compiled. The bytecode file is known as a Java class file (which
is what a compiled Java program is called.)

Only a small number of bytes in a class file actually contain instructions; the rest
is overhead that the file must contain in order to run on the JVM. In Figure 4-25
we have “disassembled” the bytecodes back to their higher-level format. The
bytecode locations are given in hexadecimal, starting at location 0x00. The first
4 bytes contain the magic number 0Oxcaf ebabe which identifies the program as
a compiled Java class file. The major version and minor version numbers refer to
the Java runtime system for which the program is compiled. The number of
entries in the constant pool follows, which is actually 17 in this example: the
first entry (constant pool location 0) is always reserved for the JVM, and is not
included in the class file, although indexing into the constant pool starts at loca-
tion O as if it is explicitly represented. The constant pool contains the names of
methods (functions), attributes, and other information used by the runtime sys-
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/1 This is file add.java

public class add {
public static void main(String args[]) {
int x=15, y=9, z=0
zZ =X +y

0000 cafe babe 0003 002d 0012 0700 0e07 0010  ................
0010 0a00 0200 040c 0007 0005 0100 0328 2956  ............. OV
0020 0100 1628 5h4c 6a6l1 7661 2f6C 616e 672f ...([Ljaval/l ang/
0030 5374 7269 6e67 3b29 5601 0006 3c69 6e69 String;)V...<in
0040 743e 0100 0443 6f64 6501 000d 436f 6e73 t>...Code...Cons
0050 7461 6e74 5661 6¢c75 6501 000a 4578 6365 tantVal ue...Exce
0060 7074 696f 6e73 0100 0Of 4c 696e 654e 756d ptions...Li neNum
0070 6265 7254 6162 6¢c65 0100 Oedc 6f63 616¢C ber Tabl e. . . Loca
0080 5661 7269 6162 6c65 7301 000a 536f 7572  Vari abl es. .. Sour
0090 6365 4669 6¢65 0100 0361 6464 0100 0861 ceFile...add...a
00a0 6464 2e6a 6176 6101 0010 6a6l 7661 2f6¢C dd.java...javall
00b0 616e 672f 4f62 6a65 6374 0100 046d 6169 ang/ Obj ect. .. mai

0100 0008 0006 000c 0002 0001 0007 0005 0001  ................
0110 0008 0000 001d 0001 0001 0000 0005 2ab7 ................
0120 0003 b100 0000 0100 ObOO 0000 0600 0100  ................
0130 0000 0100 0100 0d0OO 0000 0200 OfOO ..............

Figure 4-24  Java program and compiled class file.

tem.

The remainder of the file is mostly composed of the constant pool, and execut-
able Java instructions. We will not cover all details of the Java class file here. The
reader is referred to (Meyer & Downing, 1997) for a full description of the Java
class file format.

The actual code that corresponds to the Java source program, which simply adds
the constants 15 and 9, and returns the result (24) to the calling routine on the
stack, appears in locations 0x00e3 - 0x00ef . Figure 4-26 shows how that por-
tion of the bytecode is interpreted. The program pushes the constants 15 and 9
onto the stack, using local variables 0 and 1 as intermediaries, and invokes the
i add instruction which pops the top two stack elements, adds them, and places
the result on the top of the stack. The program then returns.

A cursory glance at the code shows some of the reasons why the JVM runs 10
times slower than native code. Notice that the program stores the arguments in
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18 items in constant pool

Minor version Tag =7 (Class)
Major Name index = 14
Magic number version Tag =7 (Class)
Location Name

—1 index =16
0000 caf e babe 0003 002d 0012 0700 0e07 0010 -

Tag = 10 (Methodref) Tag =12 (NameAndType)

Name and type Name index =7
index = Type index =
Tag =1( Utf)
lCnls‘s; Length 3 bytes
- /l( ) V!

0010 OaOO 0200 040c 0007 0005 0100 0328 2956

Tag =1 (Utf)
Length = 22 bytes “([Ljavallang/”
| |

0020 0100 1628 5b4c 6a6l 7661 2f6c 616e 672f
Tag =1 (Utf) Length = 6 bytes

“String; )V’ “<ini”
| |
0030 5374 7269 6e67 3b29 5601 0006 3c69 6e69
Tag = 1 (Utf) Tag =1 (Utf)
Length = Length =

“t>" | 4bytes “Code” |13bytes “Cons”

|
0040 743e 0100 0443 6f64 6501 000d 436f 6e73

Tag =1 (Utf)

Length =
“t ant Val ue” 10 bytes “Exce”

0050 7461 6e74 5661 6¢75 6501 000a 4578 6365

Tag = 1 (Utf)
Length =
“ptions” 15bytes  “Li neNunt’

l

0060 7074 696f 6e73 0100 Of 4c 696e 654e 756d

Tag =1 (Utf)
Length =
“ber Tabl e” 14 bytes “Local ”
[

0070 6265 7254 6162 6¢65 0100 Oedc 6f63 616¢C

Tag =1 (Utf)
Length =
“Vari abl es” 10 bytes “Sour”

0080 5661 7269 6162 6¢65 7301 000a 536f 7572

Tag =1 (Utf) Tag =1 (Utf)
Length = Length =
“ceFile” Sbftes “add”  |8bytes _,_,
| |

0090 6365 4669 6¢65 0100 0361 6464 0100 0861

Figure 4-25 A Java class file.

local variables 1 and 2, and then transfers them to the Java stack before adding
them. This transfer would be viewed as redundant by native code compilers for
other languages, and would be eliminated. Given this example alone, there is
probably considerable room for speed improvements from the 10x slower execu-
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Tag =1 (Utf)
Length =
“dd. j ava” 16 bytes “javall”

6464 2e6a 6176 6101 0010 6a6l 7661 2f6cC

Tag =1 (Utf)
Length =
“ang/ Cbj ect” 4bytes “mai”

616e 672f 4f62 6a65 6374 0100 046d 6169

Access flags: ACC_PUBLIC | ACC_STATIC
Access flags: ACC_PUBLIC | ACC_SUPER
Superclass: j ava/ | ang/ Obj ect
This Interface Fields count
“n” | class: add count Methods count

1 1 —
6e00 2100 0100 0200 0000 0000 0200 0900

Name index “<i ni t >”
Type index “([ Lj ava/l ang/ String; )V’
Attributes Attribute name index: “Code”

count Bytes count = 45 Max stack =2
| — Max locals = 4
1100 0600 0100 0800 0000 2d00 0200 0400

bipush (0x10) 15 (0x0f) iconst_0 (0x03) ~ istore_3 (0x3e)

istore_1 (0x3c iload_1 EOxlb)

Code bipush (0x10) 9 (0x09) iload_2 (0x1c)
count = 13 istore_2 (0x3d) iadd (0x60)

istore_3 (0x3e)

__ 1 L _
0000 0d10 Of3c 1009 3d03 3elb 1c60 3ebl— return (Oxbl)

Attribute name index: “Li neNunber Tabl " giart PC /

Attribut t . i
Til u< es coun Bytes Lines Line no.
Handlers
count=14 count=3

count

11

0000 0001 000b 0000 000e 0003 0000 0004

Access flags: ACC_PUBLIC
Start PC /  Start PC / Name index “<i ni t >”
Line no. Line no. Type index “() V"’

Attributes

0008 0006 000c 0002 0001 0007 0005 0001 count
Attribute name index: “Code”  Code count
Max stack =2 Max =5
Bytes count =29 | locals =1 CODE

__ 1 L 1
0008 0000 001d 0001 0001 0000 0005 2ab7

Attribute name index: “Li neNunber Tabl e”
Handlers count Attributes Bytes Lines
CODE count count =6 count=1
| | | [
0003 b100 0000 0100 ObOO 0000 0600 0100

Attributes count . X )
Attribute name index “Sour ceFi | e”
Start PC /

Line no. Bytes count =2 Source file index:
“add. j ava”

1
0000 0100 0100 0d0O 0000 0200 Of 00

Figure 4-25 A Java class file (Continued).

tion time of today’s JVMs. Other improvements may also come in the form of
just in time (JIT) compilers. Rather than interpreting the JVM bytecodes one
by one into the target machine code each time they are encountered, JIT compil-
ers take advantage of the fact that most programs spend most of their time in

149
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Location Code Mnemonic Meaning
0x00e3 0x10  bi push Push next byte onto stack
0x00e4 0xOf 15 Argunent to bipush
0x00e5 0x3c istore_1 Pop stack to local variable 1
0x00e6 0x10 bi push Push next byte onto stack
0x00e7 0x09 9 Argurent to bi push
0x00e8 0x3d istore_2 Pop stack to | ocal variable 2
0x00e9 0x03 iconst_O Push 0 onto stack
0x00ea 0x3e istore_3 Pop stack to local variable 3
0x00eb 0x1b iload 1 Push | ocal variable 1 onto stack
0x00ec Ox1c iload 2 Push | ocal variable 2 onto stack
0x00ed 0x60 i add Add top two stack el enents
0x00ee 0x3e istore_3 Pop stack to |l ocal variable 3
0x00ef Oxbl return Ret urn

Figure 4-26  Disassembled version of the code that implement the Java program in Figure 4-24.

loops and other iterative routines. As the JIT encounters each line of code for the
first time, it compiles it into native code and stores it away in memory for possi-
ble later use. The next time that code is executed, it is the native, compiled form
that is executed rather than the bytecodes.

m SUMMARY
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B FURTHER READING

The material in this chapter is for the most part a collection of the historical
experience gained in fifty years of stored program computer designs. Although
each generation of computer systems is typically identified by a specific hardware
technology, there have also been historically important instruction set architec-
tures. In the first generation systems of the 1950', such as Von Neuman’s
EDVAC, Eckert and Mauchly’s UNIVAC and the IBM 701, programming was
performed by hand in machine language. Although simple, these instruction set
architectures defined the fundamental concepts surrounding opcodes and oper-
ands.

The concept of an instruction set architecture as an identifiable entity can be
traced to the designers of the IBM S/360 in the 1960%. The VVAX architecture for
Digital Equipment Corporation can also trace its roots to this period when the
minicomputers, the PDP-4 and PDP-8 were being developed. Both the 360 and
VAX are two-address architectures. Significant one-address architectures include
the Intel 8080 which is the predecessor to the modern 80x86, and its contempo-
rary at that time: the Zilog Z-80. As a zero-address architecture, the Burroughs
B5000 is also of historical significance.

There are a host of references that cover the various machine languages in exist-
ence, too many to enumerate here, and so we mention only a few of the more
celebrated cases. The machine languages of Babbage’s machines are covered in
(Bromley, 1987). The machine language of the early Institute for Advanced
Study (IAS) computer is covered in (Stallings, 1996). The IBM 360 machine lan-
guage is covered in (Strubl, 1975). The machine language of the 68000 can be
found in (Gill, 1987) and the machine language of the SPARC can be found in
(SPARC, 1992). A full description of the JVM and the Java class file format can
be found in (Meyer & Downing, 1997.)

Bromley, A. G., “The Evolution of Babbage’s Calculating Engines,” Annals of the
History of Computing, 9, pp. 113-138, (1987).

Gill, A., E. Corwin, and A. Logar, Assembly Language Programming for the 68000,
Prentice-Hall, Englewood Cliffs, New Jersey, (1987).

Meyer, J. and T. Downing, Java Virtual Machine, O'Reilly & Associates, Sebasto-
pol, California, (1997).
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SPARC International, Inc., The SPARC Architecture Manual: Version 8, Prentice
Hall, Englewood Cliffs, New Jersey, (1992).

Stallings, W., Computer Organization and Architecture, 4/e, Prentice Hall, Upper
Saddle River, (1996).

Struble, G. W., Assembler Language Programming: The IBM System/360 and 370,
2/e, Addison-Wesley, Reading, (1975).

m PROBLEMS

A memory has 22* addressable locations. What is the smallest width in
bits that the address can be while still being able to address all 224 locations?

What are the lowest and highest addresses in a 22° byte memory, in which
a four-byte word is the smallest addressable unit?

The memory map for the ARC is shown in Figure 4-20.

(@) How much memory (in bytes) is available for each of the add-in video
memory modules? (Give your answer as powers of two or sums of powers of
two, e.g. 210.)

(b) When a finger is drawn across the touchscreen, the horizontal (x) and ver-
tical (y) positions of the joystick are updated in registers that are accessed at
locations (FFFFF0),g and (FFFFF4)4g, respectively. When the number ‘1’ is
written to the register at memory location (FFFFEC),¢ the screen flashes, and
then location (FFFFEC),g is automatically cleared to zero by the hardware
(the software does not have to clear it). Write an ARC program that flashes the
screen every time the user’s position changes. Use the skeleton program shown
below.

begi n

I d [x], %7 I %7 and % 8 now point to the

I d [y]l], %8 I touchscreen x and y | ocations

I d [flash], %9 I %9 points to flash | ocation
| oop: I d W7, W1l I Load current touchscreen

I d % 8, %2 I position in % 1=x and % 2=y

I d [old x], %3 I Load ol d touchscreen

I d [old y], %4 I position in % 3=x and % 4=y
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orncc %3, %0, %3
addcc %3, 1, %3
addcc %1, %3, %3

Form 1's conpl enent of ol d_x
Form 2’ s conpl enent of ol d_x

|
!
I %3 <- x - old_x
|

be X_not _noved Branch if x did not change
ba noved I x changed, so no need to check y
X_not _noved: I Your code starts here, about four lines.

<—YOUR CCDE GCES HERE

I This portion of the code is entered only if

I touchscreen cursor is noved

I Flash screen; store new x, y val ues; repeat.
nmoved:orcc %0, 1, %5 Place 1 in %5

|

st %5, %9 I Store 1 in flash register

st % 1, [old_x] I Update old joystick position

st % 2, [old_y] ! with current position

ba | oop I Repeat
fl ash: #FFFFEC I Location of flash register
X: #FFFFFO I Location of touchscreen x register
y: #FFFFF4 I Location of touchscreen y register
ol d_x 0 I Previous x position
ol d_y: 0 I Previous y position

Write an ARC subroutine that performs a swap operation on the 32-bit
operands x = 25andy = 50, which are stored in memory. Use as few reg-
isters as you can.

A section of ARC assembly code is shown below. What does it do? Express
your answer in terms of the actions it goes through. Does it add up humbers,
or clear something out? Does it simulate a for loop, a while loop, or some-
thing else? Assume that a and b are memory locations that are defined else-
where in the code.

Y: I d [k], %1
addcc %1, -4, %1
st % 1, [K]
bneg X
I d [a], %1, %2
I d [b], %1, %3
addcc %2, %3, %4
st W4, W1, [c]
ba Y
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X jmpl %15 + 4, %0
k: 40

A pocket pager contains a small processor with 27 8-bit words of memory.
The ISA has four registers: RO, R1, R2, and R3. The instruction set is shown
in Figure 4-27, as well as the bit patterns that correspond to each register, the

INSTRUCTION FORMAT

Src Dst
Opcode Mode Src Mode Dst Operand Address
[ [T [ I |
HEEEEEEEEEEEEEEN
MODE BIT PATTERNS INSTRUCTION SET
Mode Bit Pattern Mnemonic Opcode Meaning
Register 0 LOAD 000 Dst ~ Src or Memory
Direct 1 STORE 001 Dst or Memory — Src
ADD 010 Dst « Src + Dst
REGISTER BIT PATTERNS AND 011 Dst — AND(Src, Dst)
Register Bit Pattern BZERO 100 Branch if Src = 0
RO 00 JUMP 101 Unconditional jump
R1 01 COMP 110 Dst — Complement of Src
R2 10 RSHIFT 111 Dst ~ Src shifted right 1 bit
R3 1 Note:  Dst = Destination register

Src = Source register

Figure 4-27 A pocket pager I1SA.

instruction format, and the modes, which determine if the operand is a regis-
ter (mode bit = 0) or the operand is a memory location (mode bit = 1). Either
or both of the operands can be registers, but both operands cannot be mem-
ory locations. If the source or destination is a memory location, then the cor-
responding source or destination field in the instruction is not used since the
address field is used instead.

(a) Write a program using object code (not assembly code) that swaps the con-
tents of registers RO and R1. You are free to use the other registers as necessary,
but do not use memory. Use no more than four lines of code (fewer lines are
possible). Place 0’ in any positions where the value does not matter.

(b) Write a program using object code that swaps the contents of memory
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locations 12 and 13. As in part (a), you are free to use the other registers as
necessary, but do not use other memory locations. Place 0’ in any positions
where the value does not matter.

An ARC program calls the subroutine f 00, passing it three arguments, a,
b, and c. The subroutine has two local variables, mand n. Show the position
of the stack pointer and the contents of the relevant stack elements for a stack
based calling convention at the points in the program shown below. Note that
subroutine f 00 does not return anything.

(1) just before executing the cal | at label x;
(2) when the stack frame for f 00 is completed;

(3) just before executing the | d at label z (i.e., when the calling routine
resumes).

Use the stack notation shown in Figure 4-19.

I Push the arguments a, b, and c
X: call foo
z: I d %1, %2

foo:! Subroutine starts here

y: jmpl %15 + 4, %0

Why does set hi only load the high 22 bits of a register? It would be
more useful if set hi loaded all 32 bits of a register. What is the problem with
having set hi load all 32 bits?

Which of the three subroutine linkage conventions covered in this chapter
(registers, data link area, stack) is used in Figure 4-14?

A program compiled for a SPARC ISA writes the 32-bit unsigned integer
OxABCDEFO0L1 to a file, and reads it back correctly. The same program com-
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piled for a Pentium ISA also works correctly. However, when the file is trans-
ferred between machines, the program incorrectly reads the integer from the
file as 0Ox01EFCDAB. What is going wrong?

Refer to Figure 4-25. Show the Java assembly language instructions for the
code shown in locations 0x011e - 0x0122. Use the syntax format shown in
locations 0x00e3 - 0x0ef of that same figure.

You will need to make use of the following Java instructions:

i nvokespeci al n (opcode 0xb7) — Invoke a method with index n into the
constant pool. Note that n is a 16-bit (two-byte) index that follows the
i nvokespeci al opcode.

al oad_0 (opcode 0x2a) — Push local variable 0 onto the stack.

Is the JVM a little-endian or big-endian machine? Hint: Examine the first
line of the bytecode program in Figure 4-24.

Write an ARC program that implements the bytecode program shown in
Figure 4-26. Assume that, analogous in the code in the figure, the arguments
are passed on a stack, and that the return value is placed on the top of the
stack.

A JVM is implemented using the ARC ISA.

a) How much memory traffic will be generated when the program of Figure
4-26 executes?

b) For exercise 4-13, compute the memory traffic your program will generate.
Then, for part (a) above, compare that traffic with the amount generated by
your program. If most of the execution time of a program is due to its mem-
ory accesses, how much faster will your program be compared to the program
in Figure 4-26?

Can a Java bytecode program ever run as fast as a program written in the
native language of the processor? Defend your answer in one or two para-
graphs.
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(a) Write three-address, two-address, and one-address programs to com-
pute the function A = (B-C)*(D-E). Assume 8-bit opcodes, 16-bit operands
and addresses, and that data is moved to and from memory in 16-bit chunks.
(Also assume that the opcode must be transferred from memory by itself.)
Your code should not overwrite any of the operands. Use any temporary regis-
ters needed.

(b) Compute the size of your program in bytes.

(c) Compute the memory traffic your program will generate at execution
time, including instruction fetches.

Repeat Exercise 4.16 above, using ARC assembly language. Note that the
subtract mnemonic is subcc and that the multiplication mnemonic is snul .
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LANGUAGES AND THE
MACHINE

In the last chapter we looked at the relationship between the ISA, the assembly
language, and machine language. We also saw in some detail how instructions
effected register transfers and the movement of data between memory and the
CPU, but we touched only briefly on the actual process of assembly and program
linking and loading. In this chapter we widen our view of the relationships
between computer languages and the machine.

We begin by discussing compilation, the process of translating a program writ-
ten in a high level language into a functionally equivalent program in assembly
language. Following that, we discuss the process of assembly, the translation of
an assembly language program into a functionally equivalent machine language
program. We then discuss linking, the process of linking together separately
assembled modules into a single program, and loading, the process of moving
programs into memory and preparing them for execution. Following that, we
discuss the use of assembly language macros, which can be thought of as akin to
assembly-time procedures, with the exception that they are placed inline, or
expanded, in the assembly language program at every location where they are
invoked.

As we will see later in the chapter, the process of assembling an assembly lan-
guage program into machine code is rather straightforward, because there is a
one to one mapping between assembly language statements and the equivalent
machine binary codes. High-level languages, on the other hand, present a much
more complex problem.
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THE STEPS OF COMPILATION

Consider a simple assignment statement

A =B+ 4

The compiler is faced with a number of fairly complex tasks in converting this
statement into one or more assembly language statements:

» Reducing the program text to the basic symbols of the language, for exam-

ple into identifiers such as A and B, denotations such as the constant value
4, and program delimiters such as = and +. This portion of compilation is
referred to as lexical analysis.

« Parsing the symbols to recognize the underlying program structure. In the

sample statement above, for example, the parser must recognize the state-
ment as being an assignment statement of the form
Identifier “=" Expression,
where Expression is further parsed into the form
Identifier “+” Constant.
Parsing is sometimes called syntactic analysis.

» Name analysis: associating the names A and B with particular program vari-

ables, and further associating them with particular memory locations where
the variables will be located at run time.

» Type analysis: determining the type of all data items. In the case above, the

variables Aand B, and constant 4 would be recognized as being of type i nt
in some languages. Name and type analysis are sometimes referred to to-
gether as semantic analysis: determining the underlying meaning of pro-
gram components.

« Action mapping and code generation: associating program statements

with their appropriate assembly language sequence. In the statement above,
the assembly language sequence might be as follows:

I'Si npl e assi gnnment st at enent
Id [B], %0, %1 !get variable B into a register
add %1, 4, %2 I conpute the val ue of the expr.
st %2, %0, [A] !nake the assignnent

» There are additional steps that the compiler must take such as allocating

variables to registers, tracking register usage, and, should the programmer
desire it, optimizing the program.
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THE COMPILER MAPPING SPECIFICATION

When the compiler itself is being created, information about the particular 1ISA
must be embedded into it. (Note that the ISA on which the compiler executes
does not need to be the same as the ISA code that the compiler generates, a pro-
cess known as cross compilation.) This embedding is sometimes called the
mapping specification for the compiler. For example, the compiler writer must
decide how to map variables and constants of various types into the machine’s
resources. This may be a function of both the machine and the high level lan-
guage. In the C language, for example, integers (ints) can be 16, 32, or some
other number of bits in size, while Java specifies that all ints be 32-bits in size.
The example in the previous section, if considered for the C language, maps inte-
gers to ARC 32-bit words.

The compiler writer must also take into account the features and limitations of
the machine when mapping high level language constructs to assembly language
statements or statement sequences. For example, the ARC instruction set
requires that all arithmetic operands must be either immediate constants or regis-
ter variables. Therefore the compiler must generate code to get all variables into
registers before any arithmetic instructions can be executed. This is the reason for
the instruction:

ld [B], %1
in the example above.

In this text we concentrate on the mapping of common high level language con-
structs to their equivalent assembly language constructs, leaving the details of
lexical and syntactic and semantic analysis to compiler texts. (Several compiler
texts are described in the Further Reading section at the end of this chapter for
the interested reader.)

HOW THE COMPILER MAPS THE THREE INSTRUCTION CLASSES
INTO ASSEMBLY CODE

Let us consider in detail the mapping of the three instruction classes: data move-
ment, arithmetic, and control flow, from high level language into assembly lan-
guage. In the discussion and examples below we will use C as the example
language. We choose C because of its popularity, and because its syntax and
semantics, while certainly high level, are still fairly close to assembly language
concepts. The reader who is unfamiliar with C should not be distracted by this
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choice; the syntax and semantics of C are easy to understand and carry over to
other high level languages.

Variable storage in memory

In the example above, and in most of the programming examples in this text, it
has been assumed that variables can be accessed directly by their name, which is
mapped to a memory location that is known at the time the program is assem-
bled, sometimes called “assembly time.” In the example above, A = B + 4,itis
assumed that the variables A and B have addresses that are known when the state-
ment is compiled. In fact, only global variables, known as static variables in C,
have addresses that are known at compile time. Variables declared inside of func-
tions or inside of blocks that are not explicitly declared as static or global only
come into existence when the function or block is entered, and they disappear
when the function or block is exited for the last time. These variables are called
local, or in C, automatic variables. In most programs, local variables are actu-
ally much more common than global variables.

Given this ephemeral nature of local variables, a natural way of implementing
them is on a last-in-first-out stack as described in Chapter 4. Variables that are
stored on the stack come into existence when the stack frame is created and the
function is called, and they disappear when the function is exited for the last
time. While the previous chapter employed the stack pointer, %sp, to access the
stack frame, it is also common to copy the contents of %sp into another register
called the frame pointer 9 p (also known as the base pointer) upon entry into
the function, and then to use % p to access variables on the stack frame for the
duration of the function’s life. This is because temporary variables may be contin-
ually pushed and popped onto and off of the stack during the lifetime of the
function, resulting in a changing offset between % p and the items on the stack
frame. Using % p means that the compiler can define a constant offset between
% p and a value stored on the stack that will remain fixed for the life of the
frame. Based addressing is used to access stack variables. For example, an ARC
variable located on the stack at a location 12 bytes below % p can loaded into
register % 1 by the instruction

ld %p, -12, %1
or, to use the more common notation,

Id [%p - 12], % 1.
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The use of based addressing thus allows the address arithmetic, “add the contents
of 9% p to - 12” to be performed in a single instruction. Based addressing is so
common that all popular instruction sets contain that addressing mode. Some
instruction sets contain even more complicated addressing modes to assist in
accessing complex data structures that are stored in the stack frame.

To emphasize the point, variables that are stored on the stack have memory
addresses that are not known until run time. Their compile time addresses are
known as offsets from 9% p. It is only at function entry time that the actual mem-
ory address of the value is known. Thus even though stack variable addresses
suchas[% p - 12] are much more common than global variable addresses
such as A, we will assume global variables are used in the discussion below
because of the greater ease in understanding the relationship between the high
level language variable name and the address as specified in assembly language.
With that provision, let us now proceed to discuss three classes of program state-
ments; data movement, arithmetic, and control flow.

DATA MOVEMENT

In addition to simple scalar variables, most programming languages provide vari-
ous kinds of more complex data structures, including fixed record structures such
as the C struct data type, which is similar to the Pascal record, and the array
data type common to most programming languages.

Structures

An example of a C struct is the representation of a point in 3-dimensional
space having integer coordinates X, y, and z. In C this structure could be declared
as:

struct point {
int x;
int y;
int z;

An instance of this st ruct would be defined by the C statement
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struct point pt;

Having defined point pt , the programmer can now refer to the individual com-
ponents of pt by notation such as pt . x, which refers to the x component of
struct pt . The compiler would lay out this structure in memory as three consec-
utive memory locations.

The memory address of the entire structure is taken to be the lowest, or base
address of the structure, so the x component would be located at address pt , the
y component at address pt + 4, and the z component at address pt + 8.
Thus the y component of pt would be loaded into register % 1 by the instruc-
tion

ld [pt + 4], %1 %1 vy

Arrays

Most programming languages also allow the declaration of arrays of objects, that
is, collections of identical components that can be referred to either individually
or collectively. In C an array of ten integers can be defined with:

int A[10];

This definition would result in a collection of ten integers, indexed from 0 to 9.

The components of a st ruct must be explicitly named at programming time,
for example, pt . z. References such as pt . i where i is a variable whose name is
not determined until run time are not allowed. With arrays, on the other hand,
the array index can be computed at run time. For example, the programmer may
specify array element A i ], where i is a variable whose value is computed at run
time and which may assume any integer value from 0 through 9. Whereas in C
the index of the first element in the array always has an index of 0, other pro-
gramming languages allow more flexibility. In Pascal, for example, array declara-
tions such as:

A: array [-10..10] of integer

are permitted. This declaration would result in an array of 21 integers with indi-
ces running from -10 to +10.
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Accessing array elements presents a more complicated issue because of this need
to compute the index at run time, and the possibility that indices may not begin
with 0. The general expression for computing the machine address of an array
element at run time is given by:

ElementAddress = BASE + (INDEX - START)*SIZE

where BASE is the starting address of the array, INDEX is the index of the
desired element, START is the starting index of the array, and SIZE is the size of
an individual element in bytes. Thus element 5 in the Pascal array declared above
would have an address of A + (5 - (-10))*4 = A + 60. In ARC assembly language,
assuming BASE in % 2, INDEX in % 3, START in % 4, and assuming SIZE =
4, the code to load an array value into memory would be given by

sub %3, %4, %6 1966 — |NDEX - START
sl %6, 2, %6 196 — %6 * 4
ld [A+ %6], %1 1% 1 — array val ue

(sl'1 is “shift left logical,” which shifts 9% 6 2 bits to the left is this example,
bringing in two 0’s on the right.) Note that it costs three instructions to access an
array element, and more if SIZE is not a power of 2. Also note that in the C pro-
gramming language, which specifies that START = 0, one machine instruction is
saved for each array access. This may result in a considerable savings in scientific
and engineering calculations, where heavy array references are common.

ARITHMETIC INSTRUCTIONS

Arithmetic instructions are mapped pretty much as expected from their usage.
There is a possible complication in load-store machines such as ARC and com-
mercial RISC machines, however. Regardless of how many registers with which a
machine is endowed, there is always the possibility that the compiler will
encounter an arithmetic instruction that requires more registers than are avail-
able. In this case the compiler must temporarily store variables on the stack, a
so-called “register spill.” Compilers use sophisticated techniques to decide which
registers are available, using a graph-theoretic technique known as register color-
ing, and to decide when the value in a register is no longer needed to store a par-
ticular value, which is known as “live-dead analysis.”
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PROGRAM CONTROL FLOW

Most ISAs use unconditional and conditional branches, and the CPU’s arith-
metic flags to implement program control flow structures. In this section we con-
sider the mapping of the most common control flow statements.

The got o statement
The most trivial control flow statement is the got o statement, got o Label ,
which is simply implemented by the ba (branch always) unconditional branch:

ba Label

Thei f - el se statement

The Ci f - el se statement has the syntax

if (expr) stm1 else stnt?2;

which has the meaning, “If expr yields a value of true, execute st nt 1, other-
wise execute st nt 2.” Thus the compiler must evaluate the truth of expr, and
execute one or the other of the two statements depending upon the truth or fal-
sity of the expression. Assume for brevity in the example below that expr is
(% 1 == % 2), and introducing the bne, branch if not equal instruction, then
the code to implement the if-else statement is:

subcc %1, %2, %0 ! set flags, discard rslt
bne Over
I'stmt 1 code
ba End I exit if-else
Over: !stnt2 code

End: !

Note that the sign of the conditional branch, bne, branch if not equal, is the
inverse of the expression, (% 1 == 9% 2), equals. This is because the code falls
through to the st nt 1 code if the condition is met, and must branch around this
code if the condition is not met.
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The whi | e statement
The C whi | e statement has the syntax:

while (expr) stm;

The statement means, “Evaluate expr . If it is true, execute st nt , and repeat this
process until expr evaluates to false.” The assembly language mapping of this
statement has the interesting feature that the most efficient mapping has the
expression evaluation code following the statement code. Consider the C while
statement:

while (%1 == %2) %3 = %3 + 1;

where again we use register variables to simplify the code. This statement is effi-
ciently implemented as:

ba Test
True: add %3, 1, %3
Test: subcc %1, %2, %0
be True

The reader can verify that placing the expression evaluation code below the state-
ment code is more efficient than having the expression evaluation code above the
statement code.

The do- whi | e statement

C also has a do- whi | e statement with the syntax:

do stnt while (expr);

This statement works like the whi | e statement above except that st nt is always
executed once prior to testing expr . It is implemented exactly like the whi | e
statement above except that the first ba instruction is eliminated.

167
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The f or statement

The C f or statement has the syntax:

for (exprl; expr2; expr3) stnt;

The C language definition says that this statement is equivalent to:

exprl;

while (expr2) {
st nt
expr3;

}

Thus it is implemented exactly like the while statements above, with the addition
of code for expr 1 and expr 3.

The process of translating an assembly language program into a machine lan-
guage program is referred to as the assembly process. The assembly process is
straightforward and rather simple, since there is a straightforward one-to-one
mapping of assembly language statements to their machine language counter-
parts. This is in opposition to compilation, for example, in which a given
high-level language statement may be translated into a number of computation-
ally equivalent machine language statements.

While assembly is a straightforward process, it is tedious and error-prone if done
by hand. In fact, the assembler was one of the first software tools developed after
the invention of the digital electronic computer.

Commercial assemblers provide at least the following capabilities:

* Allow the programmer to specify the run-time location of data values and
programs. (Most often, however, the programmer would not specify an ab-
solute starting location for a program, because the program will be moved
around, or relocated, by the linker and perhaps the loader, as discussed be-
low.)

* Provide a means for the programmer to initialize data values in memory
prior to program execution.
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* Provide assembly-language mnemonics for all machine instructions and ad-
dressing modes, and translate valid assembly language statements into their
equivalent machine language binary values.

 Permit the use of symbolic labels to represent addresses and constants.

« Provide a means for the programmer to specify the starting address of the
program, if there is one. (There would not be a starting address if the mod-
ule being assembled is a procedure or function, for example.)

* Provide a degree of assemble-time arithmetic.

* Include a mechanism that allows variables to be defined in one assembly
language program and used in another, separately assembled program.

 Provide for the expansion of macro routines, that is, routines that can be
defined once, and then instantiated as many times as needed.

We shall illustrate how the assembly process proceeds by “hand assembling” a
simple program from ARC assembly language to ARC machine language. The
program we will assemble is similar to Figure 4-13, reproduced below for conve-
nience as Figure 5-1. In assembling this program we use the ARC encoding for-

I This program adds two nunbers
. begin
.org 2048

mai n: I d [x], w1 I Load x into %1
I d [yl, %2 | Load y into %2
addcc %1, %2, %3 I %3 « %1 + %2
st % 3, [z] | Store %3 into z
j mpl %15 + 4, %0 I Return

X: 15

y: 9

z: 0
.end

Figure 5-1 A simple ARC program that adds two numbers

mats shown in Figure 4-10, reproduced here as Figure 5-2. The figure shows the
encoding of ARC machine language. That is, it specifies the target binary
machine language of the ARC computer that the assembler must generate from
the assembly language text.
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Figure 5-2  Instruction formats and PSR format for the ARC.

Assembly and two pass assemblers

Most assemblers pass over the assembly language text twice, and are referred to as
“two-pass assemblers.” The first pass is dedicated to determining the addresses of
all data items and machine instructions, and selecting which machine instruction
should be produced for each assembly language instruction (but not yet generat-
ing machine code).

The addresses of data items and instructions are determined by employing an
assemble-time analog to the Program Counter, referred to as the location
counter. The location counter keeps track of the address of the current instruc-
tion or data item as assembly proceeds. It is generally initialized to O at the start
of the first pass, and is incremented by the size of each instruction. The . org
pseudo operation causes the location counter to be set to the value specified by
the . or g statement. For example if the assembler encounters the statement
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.org 1000

it would set the location counter to 1000, and the next instruction or data item
would be assembled at that address. During this pass the assembler also performs
any assembly-time arithmetic operations, and inserts the definitions of all labels
and constant values into a table, referred to as the symbol table.

The primary reason for requiring a second pass is to allow symbols to be used in
the program before they are defined, which is known as forward referencing.
After the first pass, the assembler will have identified and entered all symbols into
its symbol table, and, during a second pass generates the machine code, inserting
the values of symbols which are then known.

Let us now hand assemble the program shown in Figure 5-1 into machine code.
When the assembler encounters the first instruction,

I d [x], W1

it uses a pattern-matching process to recognize that it is a load instruction. Fur-
ther pattern matching deduces that it is of the form “load from a memory address
specified as a constant value (x in this case) plus the contents of a register (% 0 in
this case) into a register (% 1 in this case).” This corresponds to the second Mem-
ory format shown in Figure 5-2. Examining the second Memory format we find
that the op field for this instruction (I d) is 11. The destination of this | d
instruction goes in the r d field, which is 00001 for % 1 in this case. The op3
field is 000000 for | d, as shown in the op3 box below the Memory formats.
The rs1 field identifies the register, % 0 in this case, that is added to the
si mm3 field to form the source operand address. The i bit comes next. Notice
that the i bit is used to distinguish between the first Memory format (i =0) and
the second (i =0). Therefore the i bit is set to 1. The si nmiL3 field specifies the
address of the label x, which appears five words after the first instruction. Since
the first instruction occurs at location 2048, and since each word is composed of
four bytes, the address of x is 5 x 4 = 20 bytes after the beginning of the pro-
gram. The address of x is then 2048 + 20 = 2068 which is represented by the bit
pattern 0100000010100. This pattern fits into the signed 13-bit si nm 3 field.

The first line is thus assembled into the bit pattern shown below:
11 00001 000000 00000 1 0100000010100

L1 L 1 L 1 L I L1 1
op rd op3 rsl i simm13
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The next instruction is similar in form, and the corresponding bit pattern is:

11 00010 000000 00000 1 0100000011000
[ 11 11 1 Ll 1
op rd op3 rsl i smm13

The assembly process continues until all eight lines are assembled, as shown
below:

Id [x], %1 1100 0010 0000 0000 0010 1000 0001 0100
Id[y], %2 1100 0100 0000 0000 0010 1000 0001 1000
addcc % 1,% 2, % 3 1000 0110 1000 0000 0100 0000 0000 0010
st %3, [z] 1100 0110 0010 0000 0010 1000 0001 1100
jmpl % 15+4, %0 1000 0001 1100 0011 1110 0000 0000 0100
15 0000 0000 0000 0000 0000 0000 0000 1111
9 0000 0000 0000 0000 0000 0000 0000 1001
0 0000 0000 0000 0000 0000 0000 0000 0000

As a general approach, the assembly process is carried out by reading assembly
language statements sequentially, from first to last, and generating machine code
for each statement. And as mentioned earlier, a difficulty with this approach is
caused by forward referencing. Consider the program fragment shown in Figure
5-3. When the assembler sees the cal | statement, it does not yet know the loca-

call sub_r ! Subroutine is invoked here

sub_r: st W1, [W ! Subroutine is defined here

Figure 5-3  An example of forward referencing.

tion of sub_r since the sub_r label has not yet been seen. Thus the reference is
entered into the symbol table and marked as unresolved. The reference is
resolved when the definition of sub_r is found later in the program. The process
of building a symbol table is described below.

Assembly and the symbol table

In the first pass of the two-pass assembly process, a symbol table is created. A
symbol is either a label or a symbolic name that refers to a value used during the
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assembly process. The symbol table is generated in the first pass of assembly.

As an example of how a two-pass assembler operates, consider assembling the
code in Figure 4-14. Starting from the . begi n statement, the assembler
encounters the statement

.org 2048

This causes the assembler to set the location counter to 2048, and assembly pro-
ceeds from that address. The first statement encountered is

a_start .equ 3000

An entry is created in the symbol table for a_st art, which is given the value
3000. (Note that . equ statements do not generate any code, and thus are not
assigned addresses during assembly.)

Assembly proceeds as the assembler encounters the first machine instruction,

Id [length], %1
This instruction is assembled at the address specified by the location counter,
2048. The location counter is then incremented by the size of the instruction, 4

bytes, to 2052. Notice that when the symbol | engt h is encountered the assem-
bler has not seen any definition for it. An entry is created in the symbol table for

| engt h, but it is initially assigned the value “undefined” as shown by the “—" in
Figure 5-4a.
Symbol Value Symbol Value
a_start 3000 a_start 3000
| engt h — | engt h 2092
addr ess 2096
@
| oop 2060
done 2088
a 3000
(b)

Figure 5-4  Symbol table for the ARC program shown in Figure 4-14, (a) after symbols a_start and
length are seen; and (b) after completion.
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The assembler then encounters the second instruction

Id [address], %2

It assembles this instruction at address 2052 and enters the symbol addr ess
into the symbol table, again setting its value to “undefined,” since its definition
has not been seen. It then increments the location counter by 4 to 2056. The
andcc instruction is assembled at address 2056, and the location counter is
incremented by the size of the instruction, again 4 bytes, to 2060. The next sym-
bol that is seen is | oop, which is entered into the symbol table with a value of
2060, the value of the location counter. The next symbol that is encountered that
is not in the symbol table is done, which is also entered into the symbol table
without a value since it likewise has not been defined.

The first pass of assembly continues, and the unresolved symbols | engt h,
addr ess, and done are assigned the values 2092, 2096, and 2088, respectively
as they are encountered. The label a is encountered, and is entered into the table
with a value of 3000. The label done appears at location 2088 because there are
10 instructions (40 bytes) between the beginning of the program and done.
Addresses for the remaining labels are computed in a similar manner. If any
labels are still undefined at the end of the first pass, then an error exists in the
program and the assembler will flag the undefined symbols and terminate.

After the symbol table is created, the second pass of assembly begins. The pro-
gram is read a second time, starting from the . begi n statement, but now object
code is generated. The first statement that is encountered that causes code to be
generated is | d at location 2048. The symbol table shows that the address por-
tion of the | d instruction is (2092),, for the address of | engt h, and so one
word of code is generated using the Memory format as shown in Figure 5-5. The
second pass continues in this manner until all of the code is translated. The
assembled program is shown in Figure 5-5. Notice that the displacements for
branch addresses are given in words, rather than in bytes, because the branch
instructions multiply the displacements by four.

Final tasks of the assembler

After assembly is complete the assembler must add additional information to the
assembled module for the linker and loader:

« The module name and size. If the execution model involves memory seg-
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Location Instruction Object code
counter . begin
.org 2048
a_start .equ 3000
2048 I d [l ength], % 1 11000010 00000000 00101000 00101100
2052 Id [address], % 2 11000100 00000000 00101000 00110000
2056 andcc % 3, % 0, % 3 10000110 10001000 11000000 00000000
2060 | oop: andcc % 1, % 1, % O 10000000 10001000 01000000 00000001
2064 be done 00000010 10000000 00000000 00000110
2068 addcc % 1,-4,% 1 10000010 10000000 01111111 11111100
2072 addcc % 1, % 2, % 4 10001000 10000000 01000000 00000010
2076 Id % 4, % 5 11001010 00000001 00000000 00000000
2080 ba | oop 00010000 10111111 11111111 11111011
2084 addcc % 3, % 5, % 3 10000110 10000000 11000000 00000101
2088 done: jmpl % 15+4,9% 0 10000001 11000011 11100000 00000100
2092 | engt h: 20 00000000 00000000 00000000 00010100
2096 address: a_start 00000000 00000000 00001011 10111000
.org a_start
3000 a: 25 00000000 00000000 00000000 00011001
3004 -10 11111111 11111111 11111111 11110110
3008 33 00000000 00000000 00000000 00100001
3012 -5 11111111 11111111 11111111 11111011
3016 7 00000000 00000000 00000000 00000111
.end

Figure 5-5 Output from the second pass of the assembler for the ARC program shown in Figure
4-14.

ments for code, data, stack, etc. then the sizes and identities of the various
segments must be specified.

 The address of the start symbol, if one is defined in the module. Most as-
semblers and high level languages provide for a special reserved label that
the programmer can use to indicate where the program should start execu-
tion. For example, C specifies that execution will start at the function
named mai n() . In Figure 5-1 the label “main” is a signal to the assembler
that execution should start at that location.

« Information about global and external symbols. The linker will need to
know the addresses of any global symbols defined in the module and ex-
ported by it, and it will likewise need to know which symbols remain un-
defined in the module because they are defined as global in another
module.

« Information about any library routines that are referenced by the module.
Some libraries contain commonly used functionality such as math or other
specialized functions. We will have more to say about library usage in the
sections below.
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* The values of any constants that are to be loaded into memory. Some load-
ers expect data initialization to be specified separately from the binary code.

« Relocation information. When the linker is invoked most of the modules
that are to be linked will need to be relocated as the modules are concate-
nated. The whole issue of module relocation is complicated because some
address references can be relocated and others cannot. We discuss reloca-
tion later, but here we note that the assembler specifies which addresses can
be relocated and which others cannot.

Location of programs in memory

Up until now we have assumed that programs are located in memory at an
address that is specified by a . or g pseudo operation. This may indeed be the
case in systems programming, where the programmer has a reason for wanting a
program to be located at a specific memory location, but typically the program-
mer does not care where the program is located in memory. Furthermore, when
separately assembled or compiled programs are linked together, it is difficult or
impossible for the programmer to know exactly where each module will be
located after linking, as they are concatenated one after the other. For this reason
most addresses are specified as being relocatable in memory, except perhaps for
addresses such as 1/0 addresses, which may be fixed at an absolute memaory loca-
tion.

In the next section we discuss relocation in more detail; here we merely note that
it is the assembler’s responsibility to mark symbols as being relocatable. Whether
a given symbol is relocatable or not depends upon both the assembly language
and the operating system’s conventions. In any case, this relocation information
is included in the assembled module for use by the linker and/or loader in a relo-
cation dictionary. Symbols that are relocatable are often marked with an “R”
after their value in the assembler’s listing file.

Most applications of any size will have a number of separately compiled or
assembled modules. These modules may be generated by different programming
languages or they may be present in a library provided as part of the program-
ming language environment or operating system. Each module must provide the
information described above, so that they can be linked together for loading and
execution.
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A linkage editor, or linker, is a software program that combines separately
assembled programs (called object modules) into a single program, which is
called a load module. The linker resolves all global-external references and relo-
cates addresses in the separate modules. The load module can then be loaded into
memory by a loader, which may also need to modify addresses if the program is
loaded at a location that differs from the loading origin used by the linker.

A relatively new technique called dynamic link libraries (DLLS), popularized
by Microsoft in the Windows operating system, and present in similar forms in
other operating systems, postpones the linking of some components until they
are actually needed at run time. We will have more to say about dynamic linking
later in this section.

LINKING

In combining the separately compiled or assembled modules into a load module,
the linker must:

Resolve address references that are external to modules as it links them.

Relocate each module by combining them end-to-end as appropriate. Dur-
ing this relocation process many of the addresses in the module must be
changed to reflect their new location.

Specify the starting symbol of the load module.

If the memory model includes more than one memory segment, the linker
must specify the identities and contents of the various segments.

Resolving external references

In resolving address references the linker needs to distinguish local symbol names
(used within a single source module) from global symbol names (used in more
than one module). This is accomplished by making use of the . gl obal and
. ext er n pseudo-ops during assembly. The . gl obal pseudo-op instructs the
assembler to mark a symbol as being available to other object modules during the
linking phase. The . ext er n pseudo-op identifies a label that is used in one
module but is defined in another. A . gl obal is thus used in the module where
a symbol is defined (such as where a subroutine is located) and a . ext ern is
used in every other module that refers to it. Note that only address labels can be
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global or external: it would be meaningless to mark a . equ symbol as global or
external, since . equ is a pseudo-op that is used during the assembly process only,
and the assembly process is completed by the time that the linking process
begins.

All labels referred to in one program by another, such as subroutine names, will
have a line of the form shown below in the source module:
. gl obal

synbol 1, synbol 2,

All other labels are local, which means the same label can be used in more than
one source module without risking confusion since local labels are not used after
the assembly process finishes. A module that refers to symbols defined in another
module should declare those symbols using the form:

.extern synbol 1, synbol 2,

As an example of how . gl obal and . ext er n are used, consider the two assem-
bly code source modules shown in Figure 5-6. Each module is separately assem-

! Main program ! Subroutine library
. begin . begin
.org 2048 ONE . equ 1
.extern sub .org 2048
main: | d [x], %2 .gl obal sub
Id [yl, %3 sub: orncc %3, %0, %3
call sub addcc %3, ONE, % 3
jmpl %15 + 4, %0 j mpl %15 + 4, %0
x: 105 .end
y: 92
.end

Figure 5-6 A program calls a subroutine that subtracts two integers.

bled into an object module, each with its own symbol table as shown in Figure
5-7. The symbol tables have an additional field that indicates if a symbol is global
or external. Program nai n begins at location 2048, and each instruction is four
bytes long, so x and y are at locations 2064 and 2068, respectively. The symbol
sub is marked as external as a result of the . ext er n pseudo-op. As part of the
assembly process the assembler includes header information in the module about
symbols that are global and external so they can be resolved at link time.
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Global/ | Reloc- Global/ | Reloc-
Symbol | Value | External | atable Symbol | Value | External | atable
sub - Externa - ONE 1 No No
mai n 2048 No Yes sub 2048 Global Yes
X 2064 No Yes . .
Subroutine Library
y 2068 No Yes
Main Program

Figure 5-7  Symbol tables for the assembly code source modules shown in Figure 5-6.

Relocation

Notice in Figure 5-6 that the two programs, nmai n and sub, both have the same
starting address, 2048. Obviously they cannot both occupy that same memory
address. If the two modules are assembled separately there is no way for an
assembler to know about the conflicting starting addresses during the assembly
phase. In order to resolve this problem, the assembler marks symbols that may
have their address changed during linking as relocatable, as shown in the Relo-
catable fields of the symbol tables shown in Figure 5-7. The idea is that a pro-
gram that is assembled at a starting address of 2048 can be loaded at address
3000 instead, for instance, as long as all references to relocatable addresses within
the program are increased by 3000 — 2048 = 952. Relocation is performed by the
linker so that relocatable addresses are changed by the same amount that the
loading origin is changed, but absolute, or non-relocatable addresses (such as the
highest possible stack address, which is 231 — 4 for 32-bit words) stays the same
regardless of the loading origin.

The assembler is responsible for determining which labels are relocatable when it
builds the symbol table. It has no meaning to call an external label relocatable,
since the label is defined in another module, so sub has no relocatable entry in
the symbol table in Figure 5-7 for program mai n, but it is marked as relocatable
in the subroutine library. The assembler must also identify code in the object
module that needs to be modified as a result of relocation. Absolute numbers,
such as constants (marked by . equ ,or that appear in memory locations, such as
the contents of x and y, which are 105 and 92, respectively) are not relocatable.
Memory locations that are positioned relative to a . or g statement, such as x and
y (not the contents of x and y!) are generally relocatable. References to fixed
locations, such as a permanently resident graphics routine that may be hardwired
into the machine, are not relocatable. All of the information needed to relocate a
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module is stored in the relocation dictionary contained in the assembled file, and
is therefore available to the linker.

LOADING

The loader is a software program that places the load module into main mem-
ory. Conceptually the tasks of the loader are not difficult. It must load the vari-
ous memory segments with the appropriate values and initialize certain registers
such as the stack pointer % p, and the program counter, %pc, to their initial val-
ues.

If there is only one load module executing at any time, then this model works
well. In modern operating systems, however, several programs are resident in
memory at any time, and there is no way that the assembler or linker can know
at which address they will reside. The loader must relocate these modules at load
time by adding an offset to all of the relocatable code in a module. This kind of
loader is known as a relocating loader. The relocating loader does not simply
repeat the job of the linker: the linker has to combine several object modules into
a single load module, whereas the loader simply modifies relocatable addresses
within a single load module so that several programs can reside in memory
simultaneously. A linking loader performs both the linking process and the
loading process: it resolves external references, relocates object modules, and
loads them into memory.

The linked executable file contains header information describing where it
should be loaded, starting addresses, and possibly relocation information, and
entry points for any routines that should be made available externally.

An alternative approach that relies on memory management accomplishes reloca-
tion by loading a segment base register with the appropriate base to locate the
code (or data) at the appropriate place in physical memory. The memory man-
agement unit (MMU), adds the contents of this base register to all memory ref-
erences. As a result, each program can begin execution at address 0 and rely on
the MMU to relocate all memory references transparently.

Dynamic link libraries

Returning to dynamic link libraries, the concept has a number of attractive fea-
tures. Commonly used routines such as memory management or graphics pack-
ages need be present at only one place, the DLL library. This results in smaller
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program sizes because each program does not need to have its own copy of the
DLL code, as would otherwise be needed. All programs share the exact same
code, even while simultaneously executing.

Furthermore, the DLL can be upgraded with bug fixes or feature enhancements
in just one place, and programs that use it need not be recompiled or relinked in
a separate step. These same features can also become disadvantages, however,
because program behavior may change in unintended ways (such as running out
of memory as a result of a larger DLL). The DLL library must be present at all
times, and must contain the version expected by each program. Many Windows
users have seen the cryptic message, “A file is missing from the dynamic link
library.” Complicating the issue in the Windows implementation, there are a
number of locations in the file system where DLLs are placed. The more sophis-
ticated user may have little difficulty resolving these problems, but the naive user
may be baffled.

A PROGRAMMING EXAMPLE

Consider the problem of adding two 64-bit numbers using the ARC assembly
language. We can store the 64-bit numbers in successive words in memory and
then separately add the low and high order words. If a carry is generated from
adding the low order words, then the carry is added into the high order word of
the result. (See problem 5.3 for the generation of the symbol table, and problem
5.4 for the translation of the assembly code in this example to machine code.)

Figure 5-8 shows one possible coding. The 64-bit operands A and B are stored in
memory in a high endian format, in which the most significant 32 bits are stored
in lower memory addresses than the least significant 32 bits. The program begins
by loading the high and low order words of A into % 1 and % 2, respectively,
and then loading the high and low order words of B into % 3 and % 4, respec-
tively. Subroutine add_64 is called, which adds A and B and places the high
order word of the result in % 5 and the low order word of the result in % 6. The
64-bit result is then stored in C, and the program returns.

Subroutine add_64 starts by adding the low order words. If a carry is not gener-
ated, then the high order words are added and the subroutine finishes. If a carry
is generated from adding the low order words, then it must be added into the
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Performa 64-bit addition: C « A+ B

Regi ster usage: %1 — Mst significant 32 bits of A
% 2 — Least significant 32 bits of A
% 3 — Most significant 32 bits of B
% 4 — Least significant 32 bits of B
%5 — Most significant 32 bits of C
% 6 — Least significant 32 bits of C
% 7 — Used for restoring carry bit

. begin ! Start assenbling
. gl obal main
.org 2048 Start program at 2048

|
mai n: I d [Al, %1 I Get high word of A

Id [A+4], %2 I Get low word of A

I d [B], %3 ! Get high word of B

I d [B+4], %4 ! Get low word of B
call add_64 ! Perform64-bit addition
st %5, [C ! Store high word of C

|

st % 6, [Ct4] Store low word of C

.org 3072 | Start add_64 at 3072
add_64: addcc %2, %4, %6 ! Add | ow order words

bcs lo_carry ! Branch if carry set

addcc %1, %3, %5 ! Add high order words

jmpl %15 + 4, %0 ! Return to calling routine
lo_carry: addcc %1, %3, %5 ! Add high order words

bcs hi _carry ! Branch if carry set

addcc %5, 1, %5 ! Add in carry

jmpl %15, 4, %0 ! Return to calling routine
hi _carry: addcc %5, 1, %5 ! Add in carry

sethi #3FFFFF, %7 ! Set up %7 for carry

addcc %7, %7, %0 ! Generate a carry

jmpl %15 + 4, %0 ! Return to calling routine
A 0 ! High 32 bits of 25

25 ! Low 32 bits of 25
B: #FFFFFFFF ! High 32 bits of -1
#FFFFFFFF ! Low 32 bits of -1
C 0 ! High 32 bits of result
0 ! Low 32 bits of result
|

.end

St op assenbling

Figure 5-8 An ARC program adds two 64-bit integers.

high order word of the result. If a carry is not generated when the high order
words are added, then the carry from the low order word of the result is simply
added into the high order word of the result and the subroutine finishes. If, how-
ever, a carry is generated when the high order words are added, then when the
carry from the low order word is added into the high order word, the final state
of the condition codes will show that there is no carry out of the high order
word, which is incorrect. The condition code for the carry is restored by placing
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a large number in % 7 and then adding it to itself. The condition codes for n, z,
and v may not have correct values at this point, however. A complete solution is
not detailed here, but in short, the remaining condition codes can be set to their
proper values by repeating the addcc just prior to the % 7 operation, taking
into account the fact that the ¢ condition code must still be preserved. =

If a stack based calling convention is used, then a number of registers may fre-
quently need to be pushed and popped from the stack during calls and returns.
In order to push ARC register % 15 onto the stack, we need to first decrement
the stack pointer (which is in % 14) and then copy % 15 to the memory loca-
tion pointed to by % 14 as shown in the code below:

addcc % 14, -4, % 14 ! Decrement stack pointer
st % 15, % 14 I Push % 15 onto stack

A more compact notation for accomplishing this might be:

push 9% 15 I Push % 15 onto stack

The compact form assigns a new label (push) to the sequence of statements that
actually carry out the command. The push label is referred to as a macro, and
the process of translating a macro into its assembly language equivalent is
referred to as macro expansion.

A macro can be created through the use of a macro definition, as shown for
push in Figure 5-9. The macro begins with a . macr o pseudo-op, and termi-

I Macro definition for 'push'

. macr o push argl I Start macro definition
addcc % 14, -4, % 14 I Decrenent stack pointer
st argl, % 14 I Push argl onto stack

. endnmacr o ! End macro definition

Figure 5-9 A macro definition for push.

nates with a . endnacr o pseudo-op. On the . macr o line, the first symbol is the
name of the macro (push here), and the remaining symbols are command line
arguments that are used within the macro. There is only one argument for macro
push, which is argl. This corresponds to % 15 in the statement “push
% 15,” or to % 1 in the statement “push 9% 1,” etc. The argument (% 15 or
9% 1) for each case is said to be “bound” to ar g1 during the assembly process.
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Additional formal parameters can be used, separated by commas as in:

.macro name argl, arg2, args3,

and the macro is then invoked with the same number of actual parameters:
name %1, %2, % 3,

The body of the macro follows the . macr o pseudo-op. Any commands can fol-
low, including other macros, or even calls to the same macro, which allows for a
recursive expansion at assembly time. The parameters that appear in the . macr o
line can replace any text within the macro body, and so they can be used for
labels, instructions, or operands.

It should be noted that during macro expansion formal parameters are replaced
by actual parameters using a simple textual substitution. Thus one can invoke the
push macro with either memory or register arguments:

push % 1

or

push foo

The programmer needs to be aware of this feature of macro expansion when the
macro is defined, lest the expanded macro contain illegal statements.

Additional pseudo-ops are needed for recursive macro expansion. The . i f and
. endi f pseudo-ops open and close a conditional assembly section, respectively.
If the argument to . i f is true (at macro expansion time) then the code that fol-
lows, up to the corresponding . endi f, is assembled. If the argumentto . i f is
false, then the code between . i f and . endi f is ignored by the assembler. The
conditional operator for the . i f pseudo-op can be any member of the set {<, =,
> = #, or <}

Figure 5-10 shows a recursive macro definition and its expansion during the
assembly process. The expanded code sums the contents of registers % 1 through
9% X and places the result in % 1. The argument X is tested in the . i f line. If X
is greater than 2, then the macro is called again, but with the argument X — 1. If
the macro r ecur s_add is invoked with an argument of 4, then three lines of



CHAPTER 5 LANGUAGES AND THE MACHINE 185

! A recursive nmacro definition

.macro recurs_add X I Start macro definition

i f X>2 ! Assenble code if X > 2
recurs_add X -1 I Recursive call

.endif I End .if construct
addcc %1, %X, % 1! Add argument into %1

. endmacr o I End nacro definition

recurs_add 4 ! I nvoke the macro
Expands to:

addcc %1, %2, W1l

addcc %1, %3, W1l

addcc %1, %4, W1l

Figure 5-10 A recursive macro definition, and the corresponding macro expansion.

code are generated as shown in the bottom of the figure. The first time that
recurs_add is invoked, X has a value of 4. The macro is invoked again with X
= 3and X = 2, at which point the first addcc statement is generated. The sec-
ond and third addcc statements are then generated as the recursion unwinds.

As mentioned earlier, for an assembler that supports macros, there must be a
macro expansion phase that takes place prior to the two-pass assembly process.
Macro expansion is normally performed by a macro preprocessor before the
program is assembled. The macro expansion process may be invisible to a pro-
grammer, however, since it may be invoked by the assembler itself. Macro expan-
sion typically requires two passes, in which the first pass records macro
definitions, and the second pass generates assembly language statements. The
second pass of macro expansion can be very involved, however, if recursive macro
definitions are supported. A more detailed description of macro expansion can be
found in (Donovan, 1972).

As integrated circuit technology provides ever increasing capacity within the pro-
cessor, processor vendors search for new ways to use that capacity. One way that
both Intel and Motorola capitalized on the additional capacity was to extend
their ISAs with new registers and instructions that are specialized for processing
streams or blocks of data. Intel provides the MMX extension to their Pentium
processors and Motorola provides the AltiVec extension to their PowerPC pro-
cessors. In this section we will discuss why the extensions are useful, and how the
two companies implemented them.
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BACKGROUND

The processing of graphics, audio, and communication streams requires that the
same repetitive operations be performed on large blocks of data. For example a
graphic image may be several megabytes in size, with repetitive operations
required on the entire image for filtering, image enhancement, or other process-
ing. So-called streaming audio (audio that is transmitted over a network in real
time) may require continuous operation on the stream as it arrives. Likewise 3-D
image generation, virtual reality environments, and even computer games require
extraordinary amounts of processing power. In the past the solution adopted by
many computer system manufacturers was to include special purpose processors
explicitly for handling these kinds of operations.

Although Intel and Motorola took slightly different approaches, the results are
quite similar. Both instruction sets are extended with SIMD (Single Instruction
stream / Multiple Data stream) instructions and data types. The SIMD approach
applies the same instruction to a vector of data items simultaneously. The term
“vector” refers to a collection of data items, usually bytes or words.

Vector processors and processor extensions are by no means a new concept. The
earliest CRAY and IBM 370 series computers had vector operations or exten-
sions. In fact these machines had much more powerful vector processing capabil-
ities than these first microprocessor-based offerings from Intel and Motorola.
Nevertheless, the Intel and Motorola extensions provide a considerable speedup
in the localized, recurring operations for which they were designed. These exten-
sions are covered in more detail below, but Figure 5-11 gives an introduction to

m©0[ 11111111 00000000 01101001 10111111 00101010 01101010[10101111 10111101
+ + + + + + + +

mi[ 11111110 11111111 00001111 10101010 11111111 00010101 11010101 00101010

mmO[ 11111101 11111111 01111000 01101001 00101001 01111111 10000100 11100111

Figure 5-11  The vector addition of eight bytes by the Intel PADDB mmO, mm1 instruction.

the process. The figure shows the Intel PADDB (Packed Add Bytes) instruction,
which performs 8-bit addition on the vector of eight bytes in register MMO with
the vector of eight bytes in register MM, storing the results in register MMO.

THE BASE ARCHITECTURES

Before we cover the SIMD extensions to the two processors, we will take a look
at the base architectures of the two machines. Surprisingly, the two processors
could hardly be more different in their ISAs.
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The Intel Pentium

Aside from special-purpose registers that are used in operating system-related
matters, the Pentium ISA contains eight 32-bit integer registers, with each regis-
ter having its own “personality.” For example, the Pentium ISA contains a single
accumulator (EAX) which holds arithmetic operands and results. The processor
also includes eight 80-bit floating-point registers, which, as we will see, also serve
as vector registers for the MMX instructions. The Pentium instruction set would
be characterized as CISC (Complicated Instruction Set Computer). We will dis-
cuss CISC vs. RISC (Reduced Instruction Set Computer) in more detail in
Chapter 10, but for now, suffice it to say that the Pentium instructions vary in
size from a single byte to 9 bytes in length, and many Pentium instructions
accomplish very complicated actions. The Pentium has many addressing modes,
and most of its arithmetic instructions allow one operand or the result to be in
either memory or a register. Much of the Intel ISA was shaped by the decision to
make it binary-compatible with the earliest member of the family, the
8086/8088, introduced in 1978. (The 8086 ISA was itself shaped by Intel’s deci-
sion to make it assembly-language compatible with the venerable 8-bit 8080,
introduced in 1973.)

The Motorola PowerPC

The PowerPC, in contrast, was developed by a consortium of IBM, Motorola
and Apple, “from the ground up,” forsaking backward compatibility for the abil-
ity to incorporate the latest in RISC technology. The result was an ISA with
fewer, simpler instructions, all instructions exactly one 32-bit word wide, 32
32-bit general purpose integer registers and 32 64-bit floating point registers.
The ISA employs the “load/store” approach to memory access: memory operands
have to be loaded into registers by load and store instructions before they can be
used. All other instructions must access their operands and results in registers.

As we shall see below, the primary influence that the core ISAs described above
have on the vector operations is in the way they access memory.

VECTOR REGISTERS

Both architectures provide an additional set of dedicated registers in which vector
operands and results are stored. Figure 5-12 shows the vector register sets for the
two processors. Intel, perhaps for reasons of space, “aliases” their floating point
registers as MMX registers. This means that the Pentium’s 8 64-bit floating-point
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Intel MMX Registers Motorola AltiVec Registers
63 0 127 0
MM7 VR31
. VR30
MMO .
VR1
VRO

Figure 5-12 Intel and Motorola vector registers.

registers also do double-duty as MMX registers. This approach has the disadvan-
tage that the registers can be used for only one kind of operation at a time. The
register set must be “flushed” with a special instruction, EMMS (Empty MMX
State) after executing MMX instructions and before executing floating-point
instructions.

Motorola, perhaps because their PowerPC processor occupies less silicon, imple-
mented 32 128-bit vector registers as a new set, separate and distinct from their
floating-point registers.

Vector operands

Both Intel and Motorola’s vector operations can operate on 8, 16, 32, 64, and, in
Motorola’s case, 128-bit integers. Unlike Intel, which supports only integer vec-
tors, Motorola also supports 32-bit floating point numbers and operations.

Both Intel and Motorola’s vector registers can be filled, or packed, with 8, 16, 32,
64, and in the Motorola case, 128-bit data values. For byte operands, this results
in 8 or 16-way parallelism, as 8 or 16 bytes are operated on simultaneously. This
is how the SIMD nature of the vector operation is expressed: the same operation
is performed on all the objects in a given vector register.

Loading to and storing from the vector registers

Intel continues their CISC approach in the way they load operands into their
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vector registers. There are two instructions for loading and storing values to and
from the vector registers, MOVD and MOVQ, which move 32-bit doublewords
and 64-bit quadwords, respectively. (The Intel word is 16-bits in size.) The syn-
tax is:

MOVD mm i nB2 ; nmove doubl eword to a vector reg.
MOVD i nB2, nmm ;nove doubl eword froma vector reg.
MOVQ mm i nb4 ;nove quadword to a vector reg.
MOVQ m n64, mm ;nmove quadword froma vector reg.

< mm stands for one of the 8 MM vector registers;

« mm/mm32 stands for either one of the integer registers, an MM register,
or a memory location;

e mm/m64 stands for either an MM register or a memory location.

In addition, in the Intel vector arithmetic operations one of the operands can be
in memory, as we will see below.

Motorola likewise remained true to their professed RISC philosophy in their
load and store operations. The only way to access an operand in memory is
through the vector load and store operations. There is no way to move an oper-
and between any of the other internal registers and the vector registers. All oper-
ands must be loaded from memory and stored to memory. Typical load opcodes
are:

lvebx vD rA| 0, rB ;load byte to vector reg vD, indexed.
Ivehx vD, rA 0, rB ;nove halfword to vector reg vD i ndexed.
Ilvewx vD rAl 0, rB ;nove word to vector reg vD i ndexed.

I vx vD, rAl 0, rB ;rmove doubl eword to vector reg vD.

where vD stands for one of the 32 vector registers. The memory address of the
operand is computed from (rA|0 + rB), where rA and rB represent any two of the
integer registers r0-r32, and the “|0” symbol means that the value zero may be
substituted for rA. The byte, half word, word, or doubleword is fetched from
that address. (PowerPC words are 32 bits in size.)

The term “indexed” in the list above refers to the location where the byte, half-
word or word will be stored in the vector register. The least significant bits of the
memory address specify the index into the vector register. For example, LSB’s
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011 would specify that the byte should be loaded into the third byte of the regis-
ter. Other bytes in the vector register are undefined.

The store operations work exactly like the load instructions above except that the
value from one of the vector registers is stored in memory.

VECTOR ARITHMETIC OPERATIONS

The vector arithmetic operations form the heart of the SIMD process. We will
see that there is a new form of arithmetic, saturation arithmetic, and several new
and exotic operations.

Saturation arithmetic

Both vector processors provide the option of doing saturation arithmetic
instead of the more familiar modulo wraparound kind discussed in Chapters 2
and 3. Saturation arithmetic works just like two’s complement arithmetic as long
as the results do not overflow or underflow. When results do overflow or under-
flow, in saturation arithmetic the result is held at the maximum or minimum
allowable value, respectively, rather than being allowed to wrap around. For
example two’'s complement bytes are saturated at the high end at +127 and at the
low end at —128. Unsigned bytes are saturated at 255 and 0. If an arithmetic
result overflows or underflows these bounds the result is clipped, or “saturated” at
the boundary.

The need for saturation arithmetic is encountered in the processing of color
information. If color is represented by a byte in which 0 represents black and 255
represents white, then saturation allows the color to remain pure black or pure
white after an operation rather than inverting upon overflow or underflow.

Instruction formats

As the two architectures have different approaches to addressing modes, so their
SIMD instruction formats also differ. Intel continues using two-address instruc-
tions, where the first source operand can be in an MM register, an integer regis-
ter, or memory, and the second operand and destination is an MM register:

OP mm, mm320r64 :mm — mm OP mm/mm32/64
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Motorola requires all operands to be in vector registers, and employs three-oper-
and instructions:

OPVd, Va, Vb[,Vc]  ;Vd — VaOP Vb [OP Vc]

This approach has the advantage that no vector register need be overwritten. In
addition, some instructions can employ a third operand, Vc.

Arithmetic operations

Perhaps not too surprisingly, the MMX and AltiVec instructions are quite simi-
lar. Both provide operations on 8, 16, 32, 64, and in the AltiVec case, 128-bit
operands. In Table 5.1 below we see examples of the variety of operations pro-
vided by the two technologies. The primary driving forces for providing these
particular operations is a combination of wanting to provide potential users of
the technology with operations that they will find needed and useful in their par-
ticular application, the amount of silicon available for the extension, and the base
ISA.

VECTOR COMPARE OPERATIONS

The ordinary paradigm for conditional operations: compare and branch on con-
dition, will not work for vector operations, because each operand undergoing the
comparison can yield different results. For example, comparing two word vectors
for equality could yield TRUE, FALSE, FALSE, TRUE. There is no good way to
employ branches to select different code blocks depending upon the truth or fal-
sity of the comparisons. As a result, vector comparisons in both MMX and
AltiVec technologies result in the explicit generation of TRUE or FALSE. In
both cases, TRUE is represented by all 1’s, and FALSE by all 0’s in the destina-
tion operand. For example byte comparisons yield FFH or 00H, 16-bit compari-
sons yield FFFFH or 0000H, and so on for other operands. These values, all 1's
or all 0%, can then be used as masks to update values.

Example: comparing two byte vectors for equality

Consider comparing two MMX byte vectors for equality. Figure 5-13 shows the
results of the comparison: strings of 1’s where the comparison succeeded, and 0’
where it failed. This comparison can be used in subsequent operations. Consider
the high-level language conditional statement:
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Operation

Operands (bits)

Arithmetic

Integer Add, Subtract, signed and unsigned(B)

8, 16, 32, 64, 128

Modulo, Saturated

Integer Add, Subtract, store carry-out in vector reg- | 32 Modulo

ister(M)

Integer Multiply, store high- or low order half (1) 16 — 16X16 —

Integer multiply add: Vd = Va *Vb + V¢ (B) 16 — 8%8 Modulo, Saturated
32 ~16%16

Shift Left, Right, Arithmetic Right(B) 8, 16, 32, 64(1) —

Rotate Left, Right (M) 8, 16, 32 —

AND, AND NOT, OR, NOR, XOR(B)

64(1), 128(M)

Integer Multiply every other operand, store entire 16 — 8x8 Modulo, Saturated
result, signed and unsigned(M) 32  16%16

Maximum, minimum. Vd « Max,Min(Va, Vb) (M) | 8, 16, 32 Signed, Unsigned
Vector sum across word. Add objects in vector, add Various Modulo, Saturated
this sum to object in second vector, place result in

third vector register.(M)

Vector floating point operations, add, subtract, mul- | 32 IEEE Floating
tiply-add, etc. (M) Point

Table 5.1 MMX and AltiVec arithmetic instructions.

m©D[ 11111111 00000000 00000000 10101010 00101010 01101010[10101111 10111101]

mmi[ 11111111 11111111 00000000 10101010 00101011 01101010 11010101 00101010]
1 | | 1 1 | | |

mmO[ 11111111 00000000 11111111 11111111 00000000 11111111 00000000 00000000]
(M (P (M (M (P (T (F) (P

Figure 5-13 Comparing two MMX byte vectors for equality.

if (MmO == mm1) mm2 = mm2 else mm2 = 0;

The comparison in Figure 5-13 above yields the mask that can be used to control
the byte-wise assignment. Register mm2 is ANDed with the mask in mmO and
the result stored in mmz2, as shown in Figure 5-14. By using various combina-
tions of comparison operations and masks, a full range of conditional operations
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nmO[ 11111111 00000000 11111111 11111111 00000000 11111111 00000000 00000000]
AND
mm2[ 10110011 10001101 01100110 10101010 00101011 01101010 11010101 00101010]|

! | | ! ! | | |
m?2[ 10110011 00000000 01100110 10101010 00000000 01101010 00000000 00000000]

Figure 5-14 Conditional assignment of an MMX byte vector.

can be implemented.

Vector permutation operations

The AltiVec ISA also includes a useful instruction that allows the contents of one
vector to be permuted, or rearranged, in an arbitrary fashion, and the permuted
result stored in another vector register.

CASE STUDY SUMMARY

The SIMD extensions to the Pentium and PowerPC processors provide powerful
operations that can be used for block data processing. At the present time there
are no common compiler extensions for these instructions. As a result, program-
mers that want to use these extensions must be willing to program in assembly
language.

An additional problem is that not all Pentium or PowerPC processors contain the
extensions, only specialized versions. While the programmer can test for the pres-
ence of the extensions, in their absence the programmer must write a “manual”
version of the algorithm. This means providing two sets of code, one that utilizes
the extensions, and one that utilizes the base ISA.

m SUMMARY
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in-line code at assembly time, whereas subroutines are executed at run time.

A linker combines separately assembled modules into a single load module, which
typically involves relocating code. A loader places the load module in memory and
starts the execution of the program. The loader may also need to perform reloca-
tion if two or more load modules overlap in memory.

In practice the details of assembly, linking and loading is highly system-dependent
and language-dependent. Some simple assemblers merely produce executable
binary files, but more commonly an assembler will produce additional informa-
tion so that modules can be linked together by a linker. Some systems provide link-
ing loaders that combine the linking task with the loading task. Others separate
linking from loading. Some loaders can only load a program at the address speci-
fied in the binary file, while more commonly, relocating loaders can relocate pro-
grams to a load-time-specified address. The file formats that support these processes
are also operating-system dependent.

Before compilers were developed, programs were written directly in assembly lan-
guage. Nowadays, assembly language is not normally used directly since compilers
for high-level languages are so prevalent and also produce efficient code, but
assembly language is still important for understanding aspects of computer archi-
tecture, such as how to link programs that are compiled for different calling con-
ventions, and for exploiting extensions to architectures such as MMX and AltiVec.

B FURTHER READING

Compilers and compilation are treated by (Aho et al, 1985) and (Waite and
Carter, 1993). There are a great many references on assembly language program-
ming. (Donovan, 1972) is a classic reference on assemblers, linkers, and loaders.
(Gill et al., 1987) covers the 68000. (Goodman and Miller, 1993) serves as a
good instructional text, with examples taken from the MIPS architecture. The
appendix in (Patterson and Hennessy, 1998) also covers the MIPS architecture.
(SPARC, 1992) deals specifically with the definition of the SPARC, and SPARC
assembly language.

Aho, A. V., Sethi, R., and Ullman, J. D., Compilers, Addison Wesley Longman,
Reading, Massachusetts (1985).
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Goodman, J. and K. Miller, A Programmer’s View of Computer Architecture, Saun-
ders College Publishing, (1993).

Patterson, D. A. and J. L. Hennessy, Computer Organization and Design: The
Hardware / Software Interface, 2/e, Morgan Kaufmann Publishers, San Mateo,
California, (1998).
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Hall, Englewood Cliffs, New Jersey, (1992).
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m PROBLEMS

Create a symbol table for the ARC segment shown below using a form
similar to Figure 5-7. Use “U” for any symbols that are undefined.

X .equ 4000
.org 2048
ba mai n
.org 2072

nmai n: sethi x, %2

srl % 2, 10, %2
| ab_4: st % 2, [K]
addcc %1, -1, %1

f oo: st %1, [K]
andcc %1, %1, %O
beq lab_5
jmpl %15 + 4, %0

cons: .dwb 3

Translate the following ARC code into object code. Assume that x is at
location (4096)1.

k .equ 1024
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addcc %4 + k, %4

| d % 14, %5
addcc %14, -1, % 14
st %5, [X]

Create a symbol table for the program shown in Figure 5-8, using a form
similar to Figure 5-7.

Translate subroutine add_64 shown in Figure 5-8, including variables A,
B, and C, into object code.

A disassembler is a software program that reads an object module and
recreates the source assembly language module. Given the object code shown
below, disassemble the code into ARC assembly language statements. Since
there is not enough information in the object code to determine symbol
names, choose symbols as you need them from the alphabet, consecutively,
from @' to ‘2.’

10000010 10000000 01100000 00000001
10000000 10010001 01000000 00000110
00000010 10000000 00000000 00000011
10001101 00110001 10100000 00001010
00010000 10111111 11121111 11111100
10000001 11000011 11100000 00000100

Given two macros push and pop as defined below, unnecessary instruc-
tions can be inserted into a program if a push immediately follows a pop.
Expand the macro definitions shown below and identify the unnecessary
instructions.

. begin

. macr o push argl
addcc % 14, -4, % 14
st argl, %14

. endnmacr o

. macro pop argl
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I d % 14, argl
addcc % 14, 4, % 14

. endnacr o
I Start of program
.org 2048
pop % 1
push % 2
.end

Write a macro called r et ur n that performs the function of the j npl
statement as it is used in Figure 5-5.

In Figure 4-16, the operand x for set hi is filled in by the assembler, but
the statement will not work as intended if x > 222 because there are only 22
bits in the i m®22 field of the sethi format. In order to place an arbitrary
32-bit address into % 5 at run time, we can use set hi for the upper 22 bits,
and then use addcc for the lower 10 bits. For this we add two new
pseudo-ops: . hi gh22 and . | owd0, which construct the bit patterns for the
high 22 bits and the low 10 bits of the address, respectively. The construct:

sethi . hi gh22(#FFFFFFFF), % 1
expands to:

sethi #3FFFFF, 9% 1
and the construct:

addcc %1, .| owlO(#FFFFFFFF), % 1
expands to:

addcc % 1, #3FF, % 1.

Rewrite the calling routine in Figure 4-16 using . hi gh22 and . | owl10 so
that it works correctly regardless of where x is placed in memory.

Assume that you have the subroutine add_64 shown in Figure 5-8 avail-
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able to you. Write an ARC routine called add_128 that adds two 64-bit
numbers, making use of add_64. The two 128-bit operands are stored in
memory locations that begin at x and y, and the result is stored in the mem-
ory location that begins at z.

Write a macro called subcc that has a usage similar to addcc, that sub-
tracts its second source operand from the first.

Does ordinary, nonrecursive macro expansion happen at assembly time or
at execution time? Does recursive macro expansion happen at assembly time
or at execution time?

An assembly language programmer proposes to increase the capability of
the push macro defined in Figure 5-9 by providing a second argument, arg2.
The second argument would replace the addcc % 14, -4, % 14 with
addcc arg2, -4, arg2. Explain what the programmer is trying to
accomplish, and what dangers lurk in this approach.
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DATAPATH AND
CONTROL

In the earlier chapters, we examined the computer at the Application Level, the
High Level Language level, and the Assembly Language level (as shown in Figure
1-4.) In Chapter 4 we introduced the concept of an ISA: an instruction set that
effects operations on registers and memory. In this chapter, we explore the part of
the machine that is responsible for implementing these operations: the control
unit of the CPU. In this context, we view the machine at the microarchitecture
level (the Microprogrammed/Hardwired Control level in Figure 1-4.) The
microarchitecture consists of the control unit and the programmer-visible regis-
ters, functional units such as the ALU, and any additional registers that may be
required by the control unit.

A given ISA may be implemented with different microarchitectures. For exam-
ple, the Intel Pentium ISA has been implemented in different ways, all of which
support the same ISA. Not only Intel, but a number of competitors such as
AMD and Cyrix have implemented Pentium ISAs. A certain microarchitecture
might stress high instruction execution speed, while another stresses low power
consumption, and another, low processor cost. Being able to modify the microar-
chitecture while keeping the ISA unchanged means that processor vendors can
take advantage of new IC and memory technology while affording the user
upward compatibility for their software investment. Programs run unchanged on
different processors as long as the processors implement the same ISA, regardless
of the underlying microarchitectures.

In this chapter we examine two polarizingly different microarchitecture
approaches: microprogrammed control units and hardwired control units, and
we examine them by showing how a subset of the ARC processor can be imple-
mented using these two design techniques.
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The functionality of the microarchitecture centers around the fetch-execute
cycle, which is in some sense the “heart” of the machine. As discussed in Chapter
4, the steps involved in the fetch-execute cycle are:

1) Fetch the next instruction to be executed from memory.

2) Decode the opcode.
3) Read operand(s) from main memory or registers, if any.
4) Execute the instruction and store results.

5) Go to Step 1.

It is the microarchitecture that is responsible for making these five steps happen.
The microarchitecture fetches the next instruction to be executed, determines
which instruction it is, fetches the operands, executes the instruction, stores the
results, and then repeats.

The microarchitecture consists of a data section which contains registers and an
ALU, and a control section, as illustrated in Figure 6-1. The data section is also

Registers
¢ Control Unit
ALU
| L |
Datapath Control Section
(Data Section)

SYSTEM BUS

Figure 6-1 High level view of a microarchitecture.

referred to as the datapath. Microprogrammed control uses a a special purpose
microprogram, not visible to the user, to implement operations on the registers
and on other parts of the machine. Often, the microprogram contains many pro-
gram steps that collectively implement a single (macro)instruction. Hardwired
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control units adopt the view that the steps to be taken to implement an opera-
tion comprise states in a finite state machine, and the design proceeds using con-
ventional digital design methods (such as the methods covered in Appendix A.)
In either case, the datapath remains largely unchanged, although there may be
minor differences to support the differing forms of control. In designing the
ARC control unit, the microprogrammed approach will be explored first, and
then the hardwired approach, and for both cases the datapath will remain
unchanged.

In this section we consider a microprogrammed approach for designing the ARC
control unit. We begin by describing the datapath and its associated control sig-
nals.

The instruction set and instruction format for the ARC subset is repeated from
Chapter 4 in Figure 6-2. There are 15 instructions that are grouped into four for-
mats according to the leftmost two bits of the coded instruction. The Processor
Status Register %psr is also shown.

THE DATAPATH

A datapath for the ARC is illustrated in Figure 6-3. The datapath contains 32
user-visible data registers (%0 - 9% 31), the program counter (%pc), the
instruction register (% r), the ALU, four temporary registers not visible at the
ISA level (% enp0 — % enp3), and the connections among these components.
The number adjacent to a diagonal slash on some of the lines is a simplification
that indicates the number of separate wires that are represented by the corre-
sponding single line.

Registers 9% 0 — 9% 31 are directly accessible by a user. Register % 0 always con-
tains the value 0, and cannot be changed. The %pc register is the program
counter, which keeps track of the next instruction to be read from the main
memory. The user has direct access to %pc only through the cal | and j npl
instructions. The temporary registers are used in interpreting the ARC instruc-
tion set, and are not visible to the user. The % r register holds the current
instruction that is being executed. It is not visible to the user.
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Mhenoni ¢ Meani ng

Id Load a register from menory

st Store a register into nenory
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orncc Bi twi se | ogical NOR
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bcs Branch on carry

bvs Branch on overflow

ba Branch al ways
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Figure 6-2 Instruction subset and instruction formats for the ARC.

The ALU

The ALU performs one of 16 operations on the A and B busses according to the
table shown in Figure 6-4. For every ALU operation, the 32-bit result is placed
on the C bus, unless it is blocked by the C bus MUX when a word of memory is
placed onto the C bus instead.
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Figure 6-3 The datapath of the ARC.

The ANDCC and AND operations perform a bit-by-bit logical AND of corre-
sponding bits on the A and B busses. Note that only operations that end with
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Fs F, F1 Fy Operation Changes Condition Codes
0 00O ANDCC (A, B) yes
0 0 0 1 ORCC (A, B) yes
0010 NORCC (A, B) yes
0 01 1 | ADDCC (A B) yes
0100 SRL (A B) no
0101 | AND(A B) no
0110 OR (A B) no
0111 NOR (A, B) no
1 000 ADD (A, B) no
1 00 1 LSH FT2 (A) no
1 010 LSH FT10 (A no
1011 SIvwL3 (A no
1100 SEXT13 (A no
1101 INC (A no
1110 I NCPC (A no
1111 RSHI FT5 (A) no

Figure 6-4 ARC ALU operations.

“CC” affect the condition codes, and so ANDCC affects the condition codes
whereas AND does not. (There are times when we wish to execute arithmetic and
logic instructions without disturbing the condition codes.) The ORCC and OR
operations perform a bit-by-bit logical OR of corresponding bits on the A and B
busses. The NORCC and NOR operations perform a bit-by-bit logical NOR of
corresponding bits on the A and B busses. The ADDCC and ADD operations
carry out addition using two’s complement arithmetic on the A and B busses.

The SRL (shift right logical) operation shifts the contents of the A bus to the
right by the amount specified on the B bus (from 0 to 31 bits). Zeros are copied
into the leftmost bits of the shifted result, and the rightmost bits of the result are
discarded. LSHI FT2 and LSHI FT10 shift the contents of the A bus to the left
by two and 10 bits, respectively. Zeros are copied into the rightmost bits.

SI MML3 retrieves the least significant 13 bits of the A bus, and places zeros in
the 19 most significant bits. SEXT13 performs a sign extension of the 13 least
significant bits on the A bus to form a 32-bit word. That is, if the leftmost bit of
the 13 bit group is 1, then 1's are copied into the 19 most significant bits of the
result, otherwise, 0s are copied into the 19 most significant bits of the result. The
I NC operation increments the value on the A bus by 1, and the | NCPC opera-
tion increments the value on the A bus by four, which is used in incrementing
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the PC register by one word (four bytes). | NCPC can be used on any register
placed on the A bus.

The RSHI FT5 operation shifts the operand on the A bus to the right by 5 bits,
copying the leftmost bit (the sign bit) into the 5 new bits on the left. This has the
effect of performing a 5-bit sign extension. When applied three times in succes-
sion to a 32-bit instruction, this operation also has the effect of placing the left-
most bit of the COND field in the Branch format (refer to Figure 6-2) into the
position of bit 13. This operation is useful in decoding the Branch instructions,
as we will see later in the chapter. The sign extension for this case is inconsequen-
tial.

Every arithmetic and logic operation can be implemented with just these ALU
operations. As an example, a subtraction operation can be implemented by form-
ing the two's complement negative of the subtrahend (making use of the NOR
operation and adding 1 to it with | NC) and then performing addition on the
operands. A shift to the left by one bit can be performed by adding a number to
itself. A “do-nothing” operation, which is frequently needed for simply passing
data through the ALU without changing it, can be implemented by logically
ANDing an operand with itself and discarding the result in % 0. A logical XOR
can be implemented with the AND, OR, and NOR operations, making use of
DeMorgan’s theorem (see problem 6.5).

The ALU generates the ¢, n, z, and v condition codes which are true for a carry,
negative, zero, or overflow result, respectively. The condition codes are changed
only for the operations indicated in Figure 6-4. A signal (SCC) is also generated
that tells the %psr register when to update the condition codes.

The ALU can be implemented in a number of ways. For the sake of simplicity,
let us consider using a lookup table (LUT) approach. The ALU has two 32-bit
data inputs A and B, a 32-bit data output C, a four-bit control input F, a four-bit
condition code output (N, V, C, Z), and a signal (SCC) that sets the flags in the
%psr register. We can decompose the ALU into a cascade of 32 LUTS that
implement the arithmetic and logic functions, followed by a barrel shifter that
implements the shifts. A block diagram is shown in Figure 6-5.

The barrel shifter shifts the input word by an arbitrary amount (from 0 to 31
bits) according to the settings of the control inputs. The barrel shifter performs
shifts in levels, in which a different bit of the Shift Amount (SA) input is
observed at each level. A partial gate-level layout for the barrel shifter is shown in
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bs1 ag b3 ago by 3 bpay 0
Fos
eI I eI :
ALU ALU | | ALU ALU |,
LUTy LUTy, LUT, LUT, [T :1
/ -
7 —
] A ;
carry
Do.4
Z Z Z
J My Py 'y oy \/ i
BARREL Direction of Shift [<— Barrel Shifter
SHIFTER  Shift Amount (SA) (<A Control LUT
5
Fs Fp
Y VY l Y Y Y Y
vV C N C Cz0 z Cy Co SCC: Set Condition Codes

Figure 6-5 Block diagram of the 32-bit ALU.

Figure 6-6. Starting at the bottom of the circuit, we can see that the outputs of
the bottom stage will be the same as the inputs to that stage if the SAg bit is 0. If
the SAq bit is 1, then each output position will take on the value of its immediate
left or right neighbor, according to the direction of the shift, which is indicated
by the Shift Right input. At the next higher level, the method is applied again,
except that the SA, bit is observed and the amount of the shift is doubled. The
process continues until bit SA, is observed at the highest level. Zeros are copied
into positions that have no corresponding inputs. With this structure, an arbi-
trary shift from 0 to 31 bits to the left or the right can be implemented.

Each of the 32 ALU LUTSs is implemented (almost) identically, using the same
lookup table entries, except for changes in certain positions such as for the | NC
and | NCPC operations (see problem Figure 6.20). The first few entries for each
LUT are shown in Figure 6-7. The barrel shifter control LUT is constructed in a
similar manner, but with different LUT entries.
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Bit 31 Bit 30 . Bit1 . Bit 0
. Bit3 Bit 2

Bit 29 Bit 28 -

« Shift Right

<.,
C UUQ_QU
WY )

Bit2 |

Bit 29

Shift Right
S

Ca1 Ca0 C1 Co
Figure 6-6  Gate-level layout of barrel shifter.

The condition code bits n, z, v, and c are implemented directly. The n and ¢
bits are taken directly from the c3; output of the barrel shifter and the carry-out
position of ALU LUT 3, respectively. The z bit is computed as the NOR over
the barrel shifter outputs. The z bit is 1 only if all of the barrel shifter outputs are
0. The v (overflow) bit is set if the carry into the most significant position is dif-
ferent than the carry out of the most significant position, which is implemented
with an XOR gate.

Only the operations that end in “CC” should set the condition codes, and so a
signal is generated that informs the condition codes to change, as indicated by
the label “SCC: Set Condition Codes.” This signal is true when both F5 and F,
are false.

The Registers
All of the registers are composed of falling edge-triggered D flip-flops (see Appen-
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Figure 6-7 Truth table for most of the ALU LUTSs.

dix A). This means that the outputs of the flip-flops do not change until the
clock makes a transition from high to low (the falling edge of the clock). The reg-
isters all take a similar form, and so we will only look at the design of register
9% 1. All of the datapath registers are 32 bits wide, and so 32 flip-flops are used
for the design of % 1, which is illustrated in Figure 6-8.

Datainputs from C Bus

&
D > D

Write select (from ¢;
bit of C Decoder)

puwemiern —\ N N/

B bus enable (from ’:
b, bit of B Decoder)

Agt A Ao By B3 By
L | L |

Data outputsto A Bus Data outputs to B Bus

Figure 6-8 Design of register % 1.

The CLK input to register % 1 is ANDed with the select line (c;) from the C
Decoder. This ensures that % 1 only changes when the control section instructs
it to change. The data inputs to % 1 are taken directly from the corresponding
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lines of the C bus. The outputs are written to the corresponding lines of the A
and B busses through tri-state buffers, which are “electrically disconnected”
unless their enable inputs are set to 1. The outputs of the buffers are enabled
onto the A and B busses by the a; and b, outputs of the A and B decoders,
respectively. If neither a; nor by are high (meaning they are equal to 1), then the
outputs of % 1 are electrically disconnected from both the A and B busses since
the tri-state buffers are disabled.

The remaining registers take a similar form, with a few exceptions. Register % 0
always contains a 0, which cannot be changed. Register % 0 thus has no inputs
from the C bus nor any inputs from the C decoder, and does not need flip-flops
(see Problem 6.11). The % r register has additional outputs that correspond to
the rd, rsi, rs2, op, op2, op3, and bit 13 fields of an instruction, as illus-
trated in Figure 6-9. These outputs are used by the control section in interpreting

Cay Datainputs from C Bus Ce

— Instruction Register % r

31302928272625242322212019181716151413121110 9 8

765

4 3210

1]
Instruction
fields [T B [ [
L1 rd op2 rsi rs2
op ||
op3 bit 13

Figure 6-9 Outputs to control unit from register % r .

an instruction as we will see in Section 6.2.4. The program counter can only con-
tain values that are evenly divisible by 4, and so the rightmost two bits in %pc
can be hardwired to 0.

The A, B, and C decoders shown in Figure 6-3 simplify register selection. The
six-bit inputs to the decoders select a single register for each of the A, B, and C
busses. There are 2° = 64 possible outputs from the decoders, but there are only
38 data registers. The index shown to the left of each register (in base 10) in Fig-
ure 6-3 indicates the value that must be applied to a decoder input to select the
corresponding register. The 0 output of the C decoder is not used because % 0
cannot be written. Indices that are greater than 37 do not correspond to any reg-
isters, and are free to be used when no registers are to be connected to a bus.
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6.2.2 THE CONTROL SECTION
The entire microprogrammed ARC microarchitecture is shown in Figure 6-10.

Data Section (Datapath) Control Section
I To A Decoder " I
6 Control Store Address
Incrementer (CSAI) s
A MUX | Select g
MR [ 1] 00
ToC 0, rs1 A field 1 11 00= Next
Decoder A $ v AAAAS 01 = Jump
5 6 | — -
6 Next Decode Jump 10 = Inst. Dec.
| |To B Decoder CS Address MUX
C MUX Scratchpad + .
E MIR ,lr 11
Cfield 0, rd
3 Y'Y B MUX
MIR [T
6 5 X .
0,rs2 B field| 2048 word x 41 bit Control
| A 4 Store
51 6 g Microcode
% r rd|r52| | rsl |ops "~ 41 lr";gg":g:::n
o) | P " E (MIR)
! A % 8 X cW YOR Aucowo  wmpaodR
A AT T |
2| |cLock | |& e |
© UNIT &
2] %]
32 3 2
l < o 2
G | R[30, 31, 19-24]
1
64-t0-32
MUX v
Control
%AEIL)‘(S branch
logic (CBL)
A *
Set Condition Codes
v Vv
% Dataln RD WR
MAIN MEMORY

=P Address 232 pyte
address Acknowledge (ACK)

space

Data Out

Figure 6-10 The microarchitecture of the ARC.

The figure shows the datapath, the control unit, and the connections between
them. At the heart of the control unit is a 2048 word x 41 bit read-only memory
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(ROM) that contains values for all of the lines that must be controlled to imple-
ment each user-level instruction. The ROM is referred to as a control store in
this context. Each 41-bit word is called a microinstruction. The control unit is
responsible for fetching microinstructions and executing them, much in the
same way as user-level ARC macroinstructions are fetched and executed. This
microinstruction execution is controlled by the microprogram instruction regis-
ter (MIR), the processor status register (%psr ), and a mechanism for determin-
ing the next microinstruction to be executed: the Control Branch Logic (CBL)
unit and the Control Store (CS) Address MUX. A separate PC for the micropro-
gram is not needed to store the address of the next microinstruction, because it is
recomputed on every clock cycle and therefore does not need to be stored for
future cycles.

When the microarchitecture begins operation (at power-on time, for example), a
reset circuit (not shown) places the microword at location O in the control store
into the MIR and executes it. From that point onward, a microword is selected
for execution from either the Next, the Decode, or the Jump inputs to the CS
Address MUX; according to the settings in the COND field of the MIR and the
output of the CBL logic. After each microword is placed in the MIR, the datap-
ath performs operations according to the settings in the individual fields of the
MIR. This process is detailed below.

A microword contains 41 bits that comprise 11 fields as shown in Figure 6-11.

C
M
URW
C XDR ALU COND JUMP ADDR

xXcCcZ>r
XCZw

Figure 6-11 The microword format.

Starting from the left, the A field determines which of the registers in the datap-
ath are to be placed on the A bus. The bit patterns for the registers correspond to
the binary representations of the base 10 register indices shown in Figure 6-3
(000000 — 100101). The AMUX field selects whether the A Decoder takes its
input from the A field of the MIR (AMUX = 0) or from the r s1 field of % r
(AMUX =1).

In a similar manner, the B field determines which of the registers in the datapath
are to be placed on the B bus. The BMUX field selects whether the B Decoder
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takes its input from the B field of the MIR (BMUX = 0) or from the r s2 field of
% r (BMUX =1). The C field determines which of the registers in the datapath
is to be written from the C bus. The CMUX field selects whether the C Decoder
takes its input from the C field of the MIR (CMUX = 0) or from the r d field of
% r (CMUX =1). Since % 0 cannot be changed, the bit pattern 000000 can be
used in the C field when none of these registers are to be changed.

The RD and WR lines determine whether the memory will be read or written,
respectively. A read takes place if RD = 1, and a write takes place if WR = 1. Both
the RD and WR fields cannot be set to 1 at the same time, but both fields can be
0 if neither a read nor a write operation is to take place. For both RD and WR,
the address for the memory is taken directly from the A bus. The data input to
the memory is taken from the B bus, and the data output from the memory is
placed on the C bus. The RD line controls the 64-to-32 C Bus MUX, which
determines whether the C bus is loaded from the memory (RD = 1) or from the
ALU (RD =0).

The ALU field determines which of the ALU operations is performed according
to the settings shown in Figure 6-4. All 16 possible ALU field bit patterns corre-
spond to valid ALU operations. This means that there is no way to “turn the
ALU off” when it is not needed, such as during a read or write to memory. For
this situation, an ALU operation should be selected that has no unwanted side
effects. For example, ANDCC changes the condition codes and would not be
appropriate, whereas the AND operation does not affect the condition codes, and
would therefore be appropriate.

The COND (conditional jump) field instructs the microcontroller to take the
next microword from either the next control store location, or from the location
in the JUMP ADDR field of the MIR, or from the opcode bits of the instruction
in % r. The COND field is interpreted according to the table shown in Figure
6-12. If the COND field is 000, then no jump is taken, and the Next input to
the CS Address MUX is used. The Next input to the CS Address MUX is com-
puted by the control store address incrementer (CSAI) shown in Figure 6-10,
which increments the current output of the CS Address MUX by 1. If the
COND field is 001, 010, 011, 100, or 101, then a conditional jump is taken to
the control store location in the JUMP ADDR field, according to the value of
then, z, v, or c flags, or bit 13 of % r, respectively. The syntax “I R[ 13] ” means
“bit 13 of the instruction register % r.” If the COND field is 110, then an
unconditional jump is taken.
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O
N

0O
B

O
o

Operation

Use NEXT ADDR

Use JUMPADDRIifn =1

Use JUMPADDRIifz =1

Use JUMPADDRIfv =1

Use JUMPADDRIfc =1

Use JUMPADDRIf I R[ 13] =1
Use JUMP ADDR

DECODE

P PP PFPOOOO
PP OORFRPEF OO
P OPFP, OFr OFr O

Figure 6-12  Settings for the COND field of the microword.

The bit pattern 111 is used in the COND field when an instruction is being
decoded. When the COND field is 111, then the next control store location that
is copied into the MIR is taken from neither the Next input to the CS Address
MUX nor the Jump input, but is taken from a combination of 11 bits created by
appending 1 to the left of bits 30 and 31 of % r and appending 00 to the right of
bits 19-24 of % r . This DECODE address format is shown in Figure 6-13. The

op op3

[ [ |
L[ L] ] ] [ofof
IR bits— 31 30|24 23 2221 20 19

op2

Figure 6-13 DECODE format for a microinstruction address.

purpose of using this addressing scheme is to allow an instruction to be decoded
in a single step, by branching to a different location according to the settings in
the op, op2, and op3 fields of an instruction.

Finally, the JUMP ADDR field appears in the rightmost 11 bits of the micro-
word format. There are 211 microwords in the control store, and so 11 bits are
needed in the JUMP ADDR field in order to jump to any microstore location.

TIMING

The microarchitecture operates on a two-phase clock cycle, in which the master
sections of all of the registers change on the rising edge of the clock and the slave
sections change on the falling edge of the clock as shown in Figure 6-14. All of
the registers use falling edge-triggered master/slave D flip-flops except for % O
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Master sections settle. functions. n, z, v,and ¢ flags
.\_ become stable.
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Y
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registers loaded on registers loaded on
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Figure 6-14 Timing relationships for the registers.

which does not need flip-flops. On the falling edge of the clock, data stored in
the master sections of the registers are clocked into the slave sections. This makes
the data available for operations involving the ALU. While the clock is low, the
ALU, CBL, and MUX functions are performed, which settle in time for the ris-
ing edge of the clock. On the rising edge of the clock, the new values of the regis-
ters are written into the master sections. The registers settle while the clock is
high, and the process then repeats.

DEVELOPING THE MICROPROGRAM

In a microprogrammed architecture, instructions are interpreted by the micro-
program in the control store. The microprogram is often referred to as firmware
because it bridges the gap between the hardware and the software. The microar-
chitecture shown in Figure 6-10 needs firmware in order to execute ARC instruc-
tions, and one possible coding is described in this section.

A portion of a microprogram that implements the fetch-execute cycle for the
ARC is shown in Figure 6-15. In the control store, each microstatement is stored
in coded form (15 and 0%) in a single microword. For simplicity, the
micro-assembly language shown in Figure 6-15 is loosely defined here, and we
will leave out labels, pseudo-ops, etc., that we would normally associate with a
full-featured assembly language. Translation to the 41-bit format used in the
microstore is not difficult to perform by hand for a small microprogram, and is
frequently performed manually in practice (as we will do here) rather than creat-
ing a suite of software tools for such a small program.

Although our micro-assembly language is indeed an assembly language, it is not
the same kind of assembly language as the ARC that we studied in Chapter 4.
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0: Rlir] ~ AND(R[pc], Rpc]); READ
DECODE;

1:
/ sethi
1152: R{rd] «~ LSH FT10(ir); GOTO 2047,
/ call
1280: R[15] ~ AND(R[pc], R pc]);
1281: R{tenp0] ~ ADD(R[ir],Rir]);
1282: R{tenp0] ~ ADD(R[tenpO], R tenp0]);
1283: R{pc] ~ ADD(R[pc], Ritenp0]);
GOTO 0;
/ addcc
1600: |F RIR13]] THEN GOTO 1602;
1601: R{rd] ~ ADDCC(R[rsl1],R[rs2]);
GOTO 2047;
1602: R[tenp0] «~ SEXT13(Rir]);
1603: R[rd] ~ ADDCC(R[rs1], R[tenp0]);
GOTO 2047;
/ andcc
1604: |F R[I1R[13]] THEN GOTO 1606;
1605: R{rd] ~ ANDCC(R[rs1],R[rs2]);
GOTO 2047;
1606: R[temp0] ~ SIML3(R[ir]);
1607: R[rd] ~ ANDCC(R[rs1], R tenp0]);
GOTO 2047;
/ orcc
1608: IF R[IR[13]] THEN GOTO 1610;
1609: R[rd] ~ ORCC(R[rsi1],R[rs2]);
GOTO 2047;
1610: R{tenp0] ~ SIML3(R{ir]);
1611: R[rd] ~ ORCC(R[rs1], R tenp0]);
GOTO 2047;
/ orncc
1624: IF R{IR[13]] THEN GOTO 1626;
1625: Rrd] ~ NORCC(R[rsi1],R[rs2]);
GOTO 2047;
1626: R{tenmp0] ~ SIMML3(R{ir]);
1627: R{rd] ~ NORCC(R[rsl1], R tenp0]);
GOTO 2047;
! srl
1688: |F R[IR[13]] THEN GOTO 1690;
1689: R{rd] ~ SRL(R[rsi1],Rrs2]);
GOTO 2047;
1690: R[tenp0] ~ SIML3(Rir]);
1691: R[rd] « SRL(R[rsi],Rtenmp0]);
GOTO 2047;
! jnpl
1760: IF R[IR[13]] THEN GOTO 1762;
1761: Rpc] ~ ADD(R{rsl1],Rrs2]);
GOTO 0;
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Comment

/ Read an ARC instruction from main memory
/ 256-way jump according to opcode

/ Copy imm22 field to target register

| Save %pc in %r15

/ Shift disp30 field left
/ Shift again

/ Jump to subroutine

/'Is second source operand immediate?
/ Perform ADDCC on register sources

/ Get sign extended simm13 field
/ Perform ADDCC on register/simm13
/ sources

/'Is second source operand immediate?
/ Perform ANDCC on register sources

/ Get simm13 field
/ Perform ANDCC on register/simm13
| sources

/'Is second source operand immediate?
/ Perform ORCC on register sources

/ Get simm13 field
/ Perform ORCC on register/simm13 sources

/'Is second source operand immediate?
/ Perform ORNCC on register sources

/ Get simm13 field
/ Perform NORCC on register/simm13
| sources

/'Is second source operand immediate?
/ Perform SRL on register sources

/ Get simm13 field

/ Perform SRL on register/simm13 sources

/'Is second source operand immediate?
/ Perform ADD on register sources

Figure 6-15 Partial microprogram for the ARC. Microwords are shown in logical sequence

(not numerical sequence.)

The ARC assembly language is visible to the user, and is used for coding general
purpose programs. Our micro-assembly language is used for coding firmware,
and is not visible to the user. The sole purpose of the firmware is to interpret a
user-visible instruction set. A change to the instruction set involves changes to
the firmware, whereas a change in user-level software has no influence on the

firmware.

215
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1762: R{tenp0] ~ SEXT13(Rir]); / Get sign extended simm13 field
1763: R[pc] ~ ADD(R[rsi1], R tenp0]); / Perform ADD on register/simm13 sources
GOT0 0;
/ 1d
1792: R{tenp0] ~ ADD(R{rsi1],R[rs2]); / Compute source address
IF R[IR[13]] THEN GOTO 1794;
1793: R[rd] ~ AND(R tenp0], R tenp0]); / Place source address on A bus
READ, GOTO 2047
1794: R{tenp0] ~ SEXT13(Rir]); / Get simm13 field for source address
1795: R{tenp0] ~ ADD(R[rsl1],R[temp0]); /Compute source address
GOTO 1793;
/ st
1808: R{tenp0] ~ ADD(R{rsi1],R[rs2]); / Compute destination address
IF R[IR[13]] THEN GOTO 1810;
1809: R[ir] « RSH FT5(R[ir]); GOTO 40; /Move rd field into position of rs2 field
40: Rlir] <« RSHIFT5(R[ir]); 1 by shifting to the right by 25 bits.
41: Rlir] « RSH FT5(R[ir]);
42: Rir] « RSHFT5(R[ir]);
43: Rlir] « RSHFT5(Rir]);

/ Place destination address on A bus and
| place operand on B bus

44: RIO] ~ AND(R[tenpO],
VR TE; GOTO 2047;

Rrs2]);

1810: R[tenp0] ~ SEXT13(Rir]); / Get simm13 field for destination address
1811: R[tenp0] ~ ADD(R[rsl1],R[tenp0]); /Compute destination address
GOTO 1809;
/ Branch instructions: ba, be, bcs, bvs, bneg
1088: GOTO 2; / Decoding tree for branches
2: Rtenp0] « LSH FT10(R[ir]); / Sign extend the 22 LSB's of %temp0
3: Rtenp0] ~ RSH FT5(R{tenp0]); / by shifting left 10 bits, then right 10
4: Rtenp0] ~ RSH FT5(R[tenp0]); / bits. RSHIFT5 does sign extension.
5. Rir]  RSHIFT5(Rir]); / Move COND field to IR[13] by
6: Rir] « RSHIFT5(Rir]); / applying RSHIFTS three times. (The
7 Rir] < RSHIFT5(Rir]); / sign extension is inconsequential.)
8 |F RIIR13]] THEN GOTO 12; /s it ba?

Riir] « ADXRir], Riir]);
9: IF R{IR13]] THEN GOTO 13;
Riir] — ADX(RLir], Riir]);
10: | F Z THEN GOTO 12;
Riir] « ADXRir], Riir]);
11: GOTO 2047,
12: Rlpc] ~ ADX(R[pc], Ritenp0]);
GOTO 0;
13: |F R{IR[13]] THEN GOTO 16;
Riir] « ADXRir],Rir]);
14: |F C THEN GOTO 12;
15: GOTO 2047;
16: |F R[IR[13]] THEN GOTO 19;
17: IF N THEN GOTO 12;
18: GOTO 2047;
19: IF V THEN GOTO 12;
20: GOTO 2047;
© Rlpc] « INCPC(R[pc]);

/s it not be?
| Execute be

/ Branch for be not taken
/ Branch is taken

/s it bcs?

| Execute bcs

/ Branch for bcs not taken
/s it bvs?

| Execute bneg

/ Branch for bneg not taken
| Execute bvs

/ Branch for bvs not taken

QOTO 0; / Increment %pc and start over

Figure 6-15 (cont’).

Each statement in the microprogram shown in Figure 6-15 is preceded by a dec-
imal number that indicates the address of the corresponding microword in the
2048-word control store. The address is followed by a colon. The operation
statements follow the address, and are terminated by semicolons. An optional
comment follows the operation field and begins with a slash /" The comment
terminates at the end of the line. More than one operation is allowed per line, as
long as all of the operations can be performed in a single instruction cycle. The
ALU operations come from Figure 6-4, and there are a few others as we will see.
Note that the 65 statements are shown in logical sequence, rather than in numer-
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ical sequence.

Before the microprogram begins execution, the PC is set up with the starting
address of a program that has been loaded into the main memory. This may hap-
pen as the result of an initialization sequence when the computer is powered on,
or by the operating system during the normal course of operation.

The first task in the execution of a user-level program is to bring the instruction
pointed to by the PC from the main memory into the IR. Recall from Figure
6-10 that the address lines to main memory are taken from the A bus. In line 0,
the PC is loaded onto the A bus, and a Read operation is initiated to memory.
The notation “R[ x] ” means “register x,” in which x is replaced with one of the
registers in the datapath, and so “R[ 1] ” means “register % 1,” “R[i r] ” means
“register % r,” and “R[ r s1] ” means the register that appears in the 5-bit rs1
field of an instruction (refer to Figure 6-2.)

The expression “AND( R[ pc], R[ pc]) ” simply performs a logical AND of %pc
with itself in a literal interpretation. This operation is not very useful in a logical
sense, but what we are interested in are the side effects. In order to place %pc
onto the A bus, we have to choose an ALU operation that uses the A bus but
does not affect the condition codes. There is a host of alternative choices that can
be used, and the AND approach is arbitrarily chosen here. Note that the result of
the AND operation is discarded because the C bus MUX in Figure 6-10 only
allows the data output from main memory onto the C bus during a read opera-
tion.

A read operation normally takes more time to complete than the time required
for one microinstruction to execute. The access time of main memory can vary
depending on the memory organization, as we will see in Chapter 7. In order to
account for variations in the access times of memory, the control store address
incrementer (CSAI) does not increment the address until an acknowledge (ACK)
signal is sent which indicates the memory has completed its operation.

Flow of control within the microprogram defaults to the next higher numbered
statement unless a GOTO operation or a DECODE operation is encountered,
and so microword 1 (line 1) is read into the MIR on the next cycle. Notice that
some of the microcode statements in Figure 6-15 take up more than one line on
the page, but are part of a single microinstruction. See, for example, lines 1283
and 1601.
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Now that the instruction is in the IR as a result of the read operation in line 0,
the next step is to decode the opcode fields. This is performed by taking a
256-way branch into the microcode as indicated by the DECODE keyword in line
1 of the microprogram. The 11-bit pattern for the branch is constructed by
appending a 1 to the left of bits 30 and 31 of the IR, followed by bits 19-24 of
the IR, followed by the pattern 00. After the opcode fields are decoded, execu-
tion of the microcode continues according to which of the 15 ARC instructions
is being interpreted.

As an example of how the decode operation works, consider the addcc instruc-
tion. According to the Arithmetic instruction format in Figure 6-2, the op field
is 10 and the op3 field is 010000. If we append a 1 to the left of the op bit pat-
tern, followed by the op3 bit pattern, followed by 00, the DECODE address is
11001000000 = (1600)4. This means that the microinstructions that interpret
the addcc instruction begin at control store location 1600.

A number of DECODE addresses should never arise in practice. There is no Arith-
metic instruction that corresponds to the invalid op3 field 111111, but if this
situation does arise, possibly due to an errant program, then a microstore routine
should be placed at the corresponding DECODE address 11011111100 =
(1788)1o in order to deal with the illegal instruction. These locations are left
blank in the microprogram shown in Figure 6-15.

Instructions in the SETHI/Branch and Call formats do not have op3 fields. The
SETHI/Branch formats have op and op2 fields, and the Call format has only
the op field. In order to maintain a simple decoding mechanism, we can create
duplicate entries in the control store. Consider the SETHI format. If we follow
the rule for constructing the DECODE address, then the DECODE address will
have a 1 in the leftmost position, followed by 00 for the op field, followed by
100 which identifies SETHI in bit positions 19 — 21, followed by the bits in
positions 22 — 24 of the IR, followed by 00, resulting in the bit pattern
100100xxx00 where xxx can take on any value, depending on the i 22 field.
There are eight possible bit patterns for the xxx bits, and so we need to have
duplicate SETHI codes at locations 10010000000, 10010000100,
10010001000, 10010001100, 10010010000, 10010010100, 10010011000,
and 10010011100. DECODE addresses for the Branch and CALL formats are
constructed in duplicate locations in a similar manner. Only the lowest addressed
version of each set of duplicate codes is shown in Figure 6-15.

Although this method of decoding is fast and simple, a large amount of control
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store memory is wasted. An alternative approach that wastes much less space is to
modify the decoder for the control store so that all possible branch patterns for
SETHI point to the same location, and the same for the Branch and Call format
instructions. For our microarchitecture, we will stay with the simpler approach
and pay the price of having a large control store.

Consider now how the | d instruction is interpreted. The microprogram begins
at location 0, and at this point does not know that | d is the instruction that the
PC points to in main memory. Line O of the microprogram begins the Read
operation as indicated by the READ keyword, which brings an instruction into
the IR from the main memory address pointed to by the PC. For this case, let us
assume that the IR now contains the 32-bit pattern:

11 00010 000000 00101 1 0000001010000
op rd op3 rsl i si mml3

which is a translation of the ARC assembly code: I d %5 + 80, % 2. Linel
then performs a branch to control store address (11100000000), = (1792)1.

At line 1792, execution of the | d instruction begins. In line 1792, the immedi-
ate bit i is tested. For this example, i = 1, and so control is transferred to
microword 1794. If instead we had i = 0, then control would pass to the next
higher numbered microword, which is 1793 for this case. Line 1792 adds the
registers in the rs1 and rs2 fields of the instruction, in anticipation of a
non-immediate form of | d, but this only makes sense if i = 0, which it is not
for this example. The result that is stored in % enpO is thus discarded when con-
trol is transferred to microword 1794, but this introduces no time penalty and
does not produce any unwanted side effects (ADD does not change the condition
codes).

In microword 1794, the si niL3 field is extracted (using sign extension, as indi-
cated by the SEXT13 operation), which is added with the register in the rs1
field in microword 1795. Control is then passed to microword 1793 which is
where the READ operation takes place. Control passes to line 2047 where the PC
is incremented in anticipation of reading the next instruction from main mem-
ory. Since instructions are four bytes long and must be aligned on word bound-
aries in memory, the PC is incremented by four. Control then returns to line 0
where the process repeats. A total of seven microinstructions are thus executed in
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interpreting the | d instruction. These microinstructions are repeated below:

0: Rir] « AND(R pc], R pc]l); READ / Read an ARC instruction from main memory.
1: DECODE; / 256-way jump according to opcode
1792: R{tenp0] ~ ADD(R{rsi1],R[rs2]); / Compute source address
| F I R[13] THEN GOTO 1794;
1794: R{tenp0] «~ SEXT13(Rir]); / Get simm13 field for source address
1795: R{tenp0] ~ ADD(R[rsl], R tenmp0]); Compute source address
GOTO 1793;
1793: R[rd] ~ AND(R tenp0], R tenp0]); / Place source address on A bus
READ; GOTO 2047;
2047: R pc] « INCPC(R[pc]); GOTO 0; / Increment %pc and start over

The remaining instructions, except for branches, are interpreted similar to the
way | d is interpreted. Additional decoding is needed for the branch instructions
because the type of branch is determined by the COND field of the branch format
(bits 25 — 28), which is not used during a DECODE operation. The approach used
here is to shift the COND bits into | R[ 13] one bit at a time, and then jump to
different locations in the microcode depending on the COND bit pattern.

For branch instructions, the DECODE operation on line 2 of the microprogram
transfers control to location 1088. We need more space for the branch instruc-
tions than the four-word per instruction allocation, so line 1088 transfers control
to line 2 which is the starting address of a large section of available control store
memory.

Lines 2 — 4 extract the 22-bit displacement for the branch by zeroing the high
order 10 bits and storing the result in % enp0. This is accomplished by shifting
% r to the left by 10 bits and storing it in % enpO0, and then shifting the result
back to the right by 10 bits. (Notice that sign extension is performed on the dis-
placement, which may be negative. RSHIFT5 implements sign extension.) Lines
5 — 7 shift % r to the right by 15 bits so that the most significant COND bit
(I R[ 28] ) lines up in position | R[ 13] , which allows the Jump on | R 13] =1
operation to test each bit. Alternatively, we could shift the COND field to
I R 31] one bit at a time, and use the Junp on n condition to test each bit.
(Note that there is a subtle error in how the PC is updated in line 12. See Prob-
lem 6.21 for an explanation.)

Line 8 starts the branch decoding process, which is summarized in Figure 6-16.
If | R[ 28], which is now in | R[ 13], is set to 1, then the instruction is ba,
which is executed in line 12. Notice that control returns to line O, rather than to
line 2047, so that the PC does not get changed twice for the same instruction.



Line8 —> | R 28]
0 1

| R[27] «<— Line9

Line12| ba
0 1
be |Line10 | Rl 26] <«— Line13
0 1
Line14| bcs | R[25] <«— Line16
0 1
Line17 |bneg bvs | Line19
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cond

28 27 26 25| branch

0 001 be

0101 bcs

0110 bneg

0111 bvs

1000 ba

Figure 6-16 Decoding tree for branch instructions, showing corresponding microprogram lines.

If | R[ 28] is zero, then % r is shifted to the left by one bit by adding it to itself,
sothat | R[ 27] linesup in position | R[ 13] . Bit| R[ 27] istested in line 9. If
| R[ 27] is zero, then the be instruction is executed in line 10, otherwise % r is
shifted to the left and | R[ 26] is then tested in line 13. The remaining branch

instructions are interpreted in a similar manner.

Microassembly Language Translation

A microassembly language microprogram must be translated into binary object
code before it is stored in the control store, just as an assembly language program
must be translated into a binary object form before it is stored in main memory.
Each line in the ARC microprogram corresponds to exactly one word in the con-
trol store, and there are no unnumbered forward references in the microprogram,
so we can assemble the ARC microprogram one line at a time in a single pass.
Consider assembling line O of the microprogram shown in Figure 6-15:

0: Rir] « AND(R[pc],Rpc]); READ
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We can fill in the fields of the 41-bit microword as shown below:

C
M
URW
A B C XDR ALU COND JUMP ADDR
Pbbbbbphbbbbbohbbﬁbﬁohpkﬁbﬁpbbobbbbbbbbbb
1

xXcCcZ>r
XCZw

The PC is enabled onto both the A and B busses for the AND operation, which
transfers a word through the ALU without changing it. The A and B fields have
the bit pattern for the PC (324 = 100000,). The AMUX and BMUX fields both
contain 0%, since the inputs to these MUXes are taken from the MIR. The target
of the Read operation is the IR, which has a corresponding bit pattern of (374 =
100101,) for the C field. The CMUX field contains a 0 because the input to the
CMUX is taken from the MIR. A read operation to memory takes place, and so
the RD field contains a 1 and the WR field contains a 0. The ALU field contains
0101, which corresponds to the AND operation. Note that the condition codes
are not affected, which would happen if ANDCC is used instead. The COND
field contains 000 since control passes to the next microword, and so the bit pat-
tern in the JUMP ADDR field does not matter. Zeros are arbitrarily placed in
the JUMP ADDR field.

The second microword implements the 256-way branch. For this case, all that
matters is that the bit pattern 111 appears in the COND field for the DECODE
operation, and that no registers, memory, or condition codes are disturbed. The
corresponding bit pattern is then:

A B C
M M M
U U URW
A X B X C XDR ALU COND JUMPADDR

obbbbbppbbbbbppbbbbbppppﬁp@pﬁﬁpbbbbbbbbbb

A number of different bit patterns would also work for line 1. For example, any
bit patterns can appear in the A, B, or JUMP ADDR fields when a DECODE
operation takes place. The use of the zero bit patterns is an arbitrary choice. The
ALU field is 0101 which is for AND, which does not affect the condition codes.
Any other ALU operation that does not affect the condition codes can also be
used.

The remainder of the microprogram is translated in a similar manner. The trans-
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A B c
. M M M
M/;ngfge u u URW

A X B X C XDR ALUCOND JUMPADDR
0/112100000{0j100000/0/100101|0[10/0101/000/0000000000O0
1/000000/0000000|000O0O0OO0OO|0/00OI0101|2111 00000000000
11521100101|0000000/0j00O0000O|1/0/0j1010/110[111111111112
1280 (100000|0j2100000/0/0011110/0/0/0101000/0000O0O000000
12811100101/0(100101/0j100001|0/0/0j1000/0O00OOOO0O0O0O0O0O0OOO
12821100001|0(100001/0j100001|0/0/0j10000O0O0OOOO0O0O0O0O0O0OOO
12831100000|0j100001|0[100000/0/0|0j1000|110/00000000000
1600 |000000|0000000|0[00O00OO0O0|O0|O0101/101]11001000010
1601 ({000000|1j000000|1/000000|1/0/0/00O11110/12121111111112
1602 (100101|0/000000|0j1000010/0/0j]1100/000/00000O00000O0
16031000000{1j100001/0/000000|1/00j0011110[11111111111
1604 1000000|0[0000000IOO0O0O0OO|0OI0[0101]101]11001000110
1605|/000000{|1000000j|1[000000|10|0000O0O|I110[11111111111
1606 (100101|0j000000|0j1000010/0/0|2011/000/00000000000
1607 [000000|1|2100001/0/000000|1/0/0IO0O0O0O110/112121211111112
1608 |I000000|0[000000O0IOO0O0OOO|0O00[0101]101]11001001010
1609 1000000{|1[000000(1/000000|1/0/0j0001]110[112111111111
1610/100101/0000000|0[100001/0/0|0j1011/000/0000000000O0
1611 /000000{1{100001/0/000000|1/0/0j0001]110/11211112111111
1624 {000000|0j00O0O00OO0|0j0OOOOOO0OI0/0/0[0101101/211001011010
1625(000000J|1/000000|1/000000|1/0/0I00O10110/112121211111112
1626 1100101|0[0000000j100001|0/0/0j1011/000/00000000000O0
1627|1000000j1j100001/0000000j10|00010/110/111111111112
1688 |000000|0000000|0[00O00O0O0|O0O|O0101/000[11010011010
1689 (000000|1j000000|1/000000|1/0/0/0100110/11212111111112
1690(100101|0/000000|0j1000010/0/0|1011/000/00000000000
1691 1000000{1j100001/0/000000|1/0/0/0100{110[11111111111
1760 1000000|0[000000O0IOO0O0O0OO|OO0[0101]101]11011100010
17611000000{1000000j|1{100000|0/0|0j1000|110/00000000000
1762 {100101|0/000000|0j1000010/0/0j|1100/000/00000O00000O0
1763 {000000|1|2100001/0j100000/0/0|0|]2000110/00000000000
17921000000{1[000000(1/2100001|0/0/0j1000{101]11100000010

Figure 6-17 Assembled microprogram for the ARC instruction subset.

lated microprogram is shown in Figure 6-17, except for gaps where duplicate
branch code would appear, or where “illegal instruction” code would appear.

EXAMPLE

Consider adding an instruction called subcc to the microcoded implementation
of the ARC instruction set, which subtracts its second source operand from the
first, using two’s complement arithmetic. The new instruction uses the Arith-
metic format and an op3 field of 001100.
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A B C
M M M
U U URW
A X B X C XDR ALU COND JUMPADDR
17931100001/02100001/0/000000j1/1/00101]110/11111111111
17941100101/0[000000|0[100001(0/0|0[110000000000000000
17951000000/1j100001/0(100001(0/0/0[1000/110/11100000001
1808 |000000|1j000000j1{100001(0/0/0(1000/101/11100010010
1809 1100101/0[000000/0100101/0/0(01111/11000000101000
401100101/0[000000/0j100101/0/0[0/1111/00000000000000
41/100101/0000000j0j100101/0/0/0j1111/000[00000000000
421100101/0000000j0j100101/0/0/0j1111/000[00000000000
43/100101/0/000000/0[100101/00/0j1111/000[00000000000
441100001/0000000j1/000000/00j1j0101110/11111111111
1810 |100101/0j000000/0j100001/0/0[0)1100/00000000000000
1811 |000000j1/2100001/0(100001/0/0[0j1000/110/11100010001
1088 |1000000j0j0000O0O0|0O0O0O0O0O0[000O010111000000000010
21100101j0[000000/0[100001/0/0|0[101000000000000000
31100001/0[000000/0[100001(0/0/0[111100000000000000
41100001/0[000000/0(100001/0/0[0)1111/00000000000000
5(100101/0000000(0100101/00/0[1111000[00000000000
61100101/0[000000/0[100101/0/0/0[111100000000000000
71100101)0[000000/0[100101/0/0/0[111100000000000000
81100101/0/100100/0(100101/0/0/0(1000/10100000001100
9(100101/01001000100101/0/0/0j1000/101/00000001101
10|1001010/100100/0/100101/0|0j0j1000]010/00000001100
11/000000/00000000000000|O[O0j0101]110j21111111111
121100000/0(100001(0j100000|0|0[0j1000[2110[00000000000
131100101/0(100101(0/100101/0|0[0j1000{2101/00000010000
141000000/0[000000[0j000000|0|0[0j0101{2100[00000001100
15|000000/0j000000|0j000000|0|O|00101|110(111211111111
16|/000000/0j000000|0j00O0000|0|0|00101|101/00000010011
171000000/00000000j000000|0[0[0j0101|001/00000001100
18/000000/00000000000000|0[00j0101]110j21111111111
191000000/0000000[0j000000|0|0[0j0101|011/00000001100
20 [0000O0O0OO0O0O0O0OO0OOOOOOOOI0000101j110j21111111111
20471100000/0000000/0[100000]0[0]0}1110[110/00000000000

Figure 6-17 (Continued.)

We need to modify the microprogram to add this new instruction. We start by
computing the starting location of subcc in the control store, by appending a
‘1’ to the left of the op field, which is 10, followed by the op3 field which is
001100, followed by 00. This results in the bit pattern 11000110000 which cor-
responds to control store location (1584),4. We can then create microassembly
code that is similar to the addcc microassembly code at location 1600, except
that the two’s complement negative of the subtrahend (the second source oper-
and) is formed before performing the addition. The subtrahend is complemented
by making use of the NOR operation, and 1 is added to it by using the | NC oper-
ation. The subtraction is then completed by using the code for addcc. A
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microassembly coding for subcc is shown below:

1584: R{tenmp0] ~ SEXT13(Rir]); / Extract rs2 operand

IF IR[13] THEN GOTO 1586; I Is second source immediate?
1585: R{temp0] ~ R[rs2]; | Extract sign extended immediate operand
1586: R[tenp0] ~ NOR(R[tenpO], R[O]); / Form one’s complement of subtrahend
1587: R{tenp0] ~ INC(R[tenp0]); GOTO 1603; /Form two’'s complement of subtrahend

The corresponding microcode for one possible translation is then:

C

M

URW

A B C XDR ALU COND JUMPADDR

T T 1T T 1 T T 1T T 1T T T 1 T 1 T 1T 1 T 1 1T 1T T T T 1 T 171
1584 |1oo101|o|oooooo|0|1oooo1|0|0|o|11oo|101|11000110010|
| I I | | I I | | I I | L1 1 L1 S I I N T |

xXCcZ>»
XCZw

T T T T 1 T T T T 1 T T 1 T 1T T 1T 1 T 1 T T T T T T T 171
1585 |oooooo|0|oooooo|1|1oooo1|0|0|0|1ooo|ooo|ooooooooooo|
| | | I | | I I | L1 1 L1 S I I I |

1586 |1'o'o'o‘0‘1|0|o'o'o'o'o‘o|o|1‘o'o'o'o'1|o|o|o|o'1'1'1|o‘0‘o|o‘o'o'o'o'o‘o‘o‘o‘o'o
| I I | | N I | I I | L1 1 L1 I I | L1

1587 |1'o'o'o‘0‘1|o|o'o'o'o'o‘o|o|1‘0'0'0'0'1 o|0|o|1'1'o'1|1‘1‘0 11001000011
l 11 |

TRAPS AND INTERRUPTS

A trap is an automatic procedure call initiated by the hardware after an excep-
tional condition caused by an executing program, such as an illegal instruction,
overflow, underflow, dividing by zero, etc. When a trap occurs, control is trans-
ferred to a “trap handler” which is a routine that is part of the operating system.
The handler might do something like print a message and terminate the offend-
ing program.

One way to handle traps is to modify the microcode, possibly to check the status
bits. For instance, we can check the v bit to see if an overflow has occurred. The
microcode can then load an address into the PC (if a trap occurs) for the starting
location of the trap handler.

Normally, there is a fixed section of memory for trap handler starting addresses
where only a single word is allocated for each handler. This section of memory
forms a branch table that transfers control to the handlers, as illustrated in Fig-
ure 6-18. The reason for using a branch table is that the absolute addresses for
each type of trap can be embedded in the microcode this way, while the targets of
the jumps can be changed at the user level to handle traps differently.
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Address Contents Trap Handler
60 JUMP TO 2000 Illegal instruction
64 JUMP TO 3000 Overflow
68 JUMP TO 3600 Underflow
72 JUMPTO 5224 Zerodivide
76 JUMPTO 4180 Disk
80 JUMP TO 5364 Printer
84 JUMP TO 5908 TTY
88 JUMP TO 6048 Timer

Figure 6-18 A branch table for trap handlers and interrupt service routines.

A historically common trap is for floating point instructions, which may be
emulated by the operating system if they are not implemented directly in hard-
ware. Floating point instructions have their own opcodes, but if they are not
implemented by the hardware (that is, the microcode does not know about
them) then they will generate an illegal instruction trap when an attempt is made
to execute them. When an illegal instruction occurs, control is passed to the ille-
gal instruction handler which checks to see if the trap is caused by a floating
point instruction, and then passes control to a floating point emulation routine
as appropriate for the cause of the trap. Although floating point units are nor-
mally integrated into CPU chips these days, this method is still used when
extending the instruction set for other instructions, such as graphics extensions
to the ISA.

Interrupts are similar to traps, but are initiated after a hardware exception such
as a user hitting a key on a keyboard, an incoming telephone call for a modem, a
power fluctuation, an unsafe operating temperature, etc. Traps are synchronous
with a running program, whereas interrupts are asynchronous. Thus, a trap will
always happen at the same place in the same program running with the same
data set, whereas the timing of interrupts is largely unpredictable.

When a key is pressed on an interrupt based keyboard, the keyboard asserts an
interrupt line on the bus, and the CPU then asserts an acknowledge line as soon
as it is ready (this is where bus arbitration comes in, which is covered in Chapter
8, if more than one device wants to interrupt at the same time). The keyboard
then places an interrupt vector onto the data bus which identifies itself to the
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CPU. The CPU then pushes the program counter and processor status register
(where the flags are stored) onto the stack. The interrupt vector is used to index
into the branch table, which lists the starting addresses of the interrupt service
routines.

When a trap handler or an interrupt service routine begins execution, it saves the
registers that it plans to modify on the stack, performs its task, restores the regis-
ters, and then returns from the interrupt. The process of returning from a trap is
different from returning from a subroutine, since the process of entering a trap is
different from a subroutine call (because the %psr register is also saved and
restored). For the ARC, the r et t instruction (see Chapter 8) is used for return-
ing from a trap or interrupt. Interrupts can interrupt other interrupts, and so the
first thing that an interrupt service routine might do is to raise its priority (using
a special supervisor mode instruction) so that no interrupts of lower priority are
accepted.

NANOPROGRAMMING

If the microstore is wide, and has lots of the same words, then we can save
microstore memory by placing one copy of each unique microword in a nanos-
tore, and then use the microstore to index into the nanostore. For instance, in
the microprogram shown in Figure 6-15, lines 1281 and 1282 are the same.
Lines 3, 4, and 40-44 are the same, and there are a number of other microin-
structions that recur, especially for the duplicated branch microcode and the
duplicated illegal instruction microcode.

Figure 6-19a illustrates the space requirement for the original microstore ROM.
There are n=2048 words that are each 41 bits wide, giving an area complexity of
2048 x 41 = 83,968 bits. Suppose now that there are 100 unique microwords in
the ROM (the microprogram in Figure 6-15 is only partially complete so we can-
not measure the number of unique microwords directly). Figure 6-19b illustrates
a configuration that uses a nanostore, in which an area savings can be realized if
there are a number of bit patterns that recur in the original microcode sequence.
The unique microwords (100 for this case) form a nanoprogram, which is stored
in a ROM that is 100 words deep by 41 bits wide.

The microprogram now indexes into the nanostore. The microprogram has the
same number of microwords regardless of whether or not a nanostore is used, but
when a nanostore is used, pointers into the nanostore are stored in the microstore
rather than the wider 41-bit words. For this case, the microstore is now 2048
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Figure 6-19 (a) Microprogramming vs. (b) nanoprogramming.

words deep by [og,(100)0= 7 bits wide. The area complexity using a nanostore
is then 100 x 41 + 2048 x 7 = 18,436 bits, which is a considerable savings in area
over the original microcoded approach.

For small m and large n, where m is the length of the nanoprogram, we can real-
ize a large savings in memory. This frees up area that can be applied in some
other way, possibly to improve performance. However, instead of accessing only
the microstore, we must now access the microstore first, followed by an access to
the nanostore. The machine will thus run more slowly, but will fit into a smaller
area.

An alternative approach to a microprogrammed control unit is to use a hard-
wired approach, in which a direct implementation is created using flip-flops and
logic gates, instead of using a control store and a microword selection mecha-
nism. States in a finite state machine replace steps in the microprogram.

In order to manage the complexity of design for a hardwired approach, a hard-
ware description language (HDL) is frequently used to represent the control
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structure. One example of an HDL is VHDL, which is an acronym for VHSIC
Hardware Description Language (in which VHSIC is yet another acronym for
Very High Speed Integrated Circuit). VHDL is used for describing an architec-
ture at a very high level, and can be compiled into hardware designs through a
process known as silicon compilation. For the hardwired control unit we will
design here, a lower level HDL that is sometimes referred to as a register trans-
fer language (RTL) is more appropriate.

We will define a simple HDL/RTL in this section that loosely resembles Hill &
Peterson’s A Hardware Programming Language (AHPL) (Hill and Peterson,
1987). The general idea is to express a control sequence as a series of numbered
statements, which can then be directly translated into a hardware design. Each
statement consists of a data portion and a transfer portion, as shown below:

5. A « ADD(B, O); I Data portion
GOTO {10 CONDI TIONED ON I R[12]}. ! Control portion

The statement is labelled “5,” which means that it is preceded by statement 4
and is succeeded by statement 6, unless an out-of-sequence transfer of control
takes place. The left arrow () indicates a data transfer, to register A for this
case. The “ADD( B, C) ” construct indicates that registers B and C are sent to a
combinational logic unit (CLU) that performs the addition. Comments begin
with an exclamation mark (! ) and terminate at the end of the line. The GOTO
construct indicates a transfer of control. For this case, control is transferred to
statement 10 if bit 12 of register IR is true, otherwise control is transferred to the
next higher numbered statement (6 for this case).

Figure 6-20 shows an HDL description of a modulo 4 counter. The counter pro-
duces the output sequence: 00, 01, 10, 11 and then repeats as long as the input
line x is 0. If the input line is set to 1, then the counter returns to state O at the
end of the next clock cycle. The comma is the catenation operator, and so the
statement “Z ~ 0, 0; " assigns the two-bit pattern 00 to the two-bit output Z.

The HDL sequence is composed of three sections: the preamble, the numbered
statements, and the epilogue. The preamble names the module with the “MODULE”
keyword and declares the inputs with the “I NPUTS” keyword, the outputs with
the “OUTPUTS” keyword, and the arity (number of signals) of both, as well as
any additional storage with the “MEMORY” keyword (none for this example). The
numbered statements follow the preamble. The epilogue closes the sequence
with the key phrase “END SEQUENCE.” The key phrase “END
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MODULE: MOD_4_COUNTER.
I NPUTS: x.

Preamble ¢ qurpUTS: Z[ 2] .
MEMORY:

0. Z « 0,0;
GOTO {0 CONDI TI ONED ON X,
1 CONDI TI ONED ON X} .
1. Z - 0,1;
GOTO {0 CONDI TI ONED ON x
Statements 2 CONDI TI ONED ON X}.
2. Z « 1,0;
GOTO {0 CONDI TI ONED ON X,
3 CONDI TI ONED ON Xx}.
3. Z « 1,1;
GOTO 0.

_ END SEQUENCE.
Epilogue { END MOD 4 COUNTER

Figure 6-20 HDL sequence for a resettable modulo 4 counter.

MOD_4_COUNTER” closes the description of the module. Anything that appears
between “END SEQUENCE” and “END MOD_4_COUNTER” occurs continuously,
independent of the statement number. There are no such statements for this case.

In translating an HDL description into a design, the process can be decomposed
into separate parts for the control section and the data section. The control sec-
tion deals with how transitions are made from one statement to another. The
data section deals with producing outputs and changing the values of any mem-
ory elements.

We consider the control section first. There are four numbered statements, and
so we will use four flip-flops, one for each statement, as illustrated in Figure
6-21. This is referred to as a one-hot encoding approach, because exactly one
flip-flop holds a true value at any time. Although four states can be encoded
using only two flip-flops, studies have shown that the one-hot encoding
approach results in approximately the same circuit area when compared with a
more densely encoded approach; but more importantly, the complexity of the
transfers from one state to the next are generally simpler and can be implemented
with shallow combinational logic circuits, which means that the clock rate can be
faster for a one-hot encoding approach than for a densely encoded approach.

In designing the control section, we first draw the flip-flops, apply labels as
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Z[0]

CONTROL SECTION

DATA SECTION

CLK—[—-

Figure 6-21 Logic design for a modulo 4 counter described in HDL.

appropriate, and connect the clock inputs. The next step is to simply scan the
numbered statements in order and add logic as appropriate for the transitions.
From statement O, there are two possible transitions to statements 0 or 1, condi-
tioned on x or its complement, respectively. The output of flip-flop 0 is thus con-
nected to the inputs of flip-flops 0 and 1, through AND gates that take the value
of the x input into account. Note that the AND gate into flip-flop 1 has a circle
at one of its inputs, which is a simplified notation that means x is complemented
by an inverter before entering the AND gate.

A similar arrangement of logic gates is applied for statements 1 and 2, and no
logic is needed at the output of flip-flop 3 because statement 3 returns to state-
ment 1 unconditionally. The control section is now complete and can execute
correctly on its own. No outputs are produced, however, until the data section is
implemented.

We now consider the design of the data section, which is trivial for this case.
Both bits of the output Z change in every statement, and so there is no need to
condition the generation of an output on the state. We only need to produce the
correct output values for each of the statements. The least significant bit of Z is
true in statements 1 and 3, and so the outputs of the corresponding control
flip-flops are ORed to produce Z[0]. the most significant bit of Z is true in state-
ments 2 and 3, and so the outputs of the corresponding control flip-flops are
ORed to produce Z[1]. The entire circuit for the mod 4 counter is now com-
plete, as shown in Figure 6-21.
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We can now use our HDL in describing the control section of the ARC microar-
chitecture. There is no need to design the data section, since we have already
defined its form in Figure 6-10. The data section is the same for both the micro-
coded and hardwired approaches. As for the microcoded approach, the opera-
tions that take place for a hardwired approach are:

1) Fetch the next instruction to be executed from memory.

2) Decode the opcode.

3) Read operand(s) from main memory or registers, if any.

4) Execute the instruction and store results.

5) Go to Step 1.
The microcode of Figure 6-15 can serve as a guide for what needs to be done.
The first step is to fetch the next user-level instruction from main memory. The
following HDL line describes this operation:
0: ir « AND(pc, pc); Read = 1.
The structure of this statement is very similar to the first line of the micropro-
gram, which may not be surprising since the same operations must be carried out
on the same datapath.
Now that the instruction has been fetched, the next operation is to decode the
opcode. This is where the power of a hardwired approach comes into play. Since
every instruction has an op field, we can decode that field first, and then decode

the op2, op3, and cond fields as appropriate for the instruction.

The next line of the control sequence decodes the op field:

1: GOTO {2 CONDI TI ONED ON 1 R[ 31] xI R[ 30] ,
4 CONDI TI ONED ON TR[31] xI R[ 30] ,
8 CONDI TI ONED ON | R[ 31] xIR[ 307,
10 CONDI TI ONED ON | R[ 31] xI R[ 30] }.

Branch/ Sethi format: op=00
Call fornmat: op=01
Arithnetic format: op=10
Menory fornat: op=11

The product symbol “x” indicates a logical AND operation. Control is thus
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transferred to one of the four numbered statements: 2, 4, 8, or 10 depending on

the bit pattern in the op field.

Figure 6-24 shows a complete HDL description of the control section. We may

MODULE: ARC_CONTROL_UNIT.
I NPUTS:

QUTPUTS: C, N, V, Z. ! These are set by the ALU

MEMORY: R[16][32], pc[32], ir[32], tenpO[32], tenpl[32], tenp2[32],
tenp3[ 32] .
0: ir « AND(pc, pc); Read « 1; ! Instruction fetch

! Decode op field
1: GOTO {2 CONDI TIONED ON ir[31] xi r[30],
4 CONDI TI ONED ON ir[31] xi r[30],
8 CONDI TI ONED ON i r[31] xir[30],
10 CONDI TI ONED ON i r[31] xi r[30]}.
! Decode op2 field
2: GOTO 19 CONDI TIONED ON ir[24]. !

I Arithnetic format:

|

I Call format: op=01
|

! Menory format:

! Branch/sethi format:

op=00

op=10
op=11

Goto 19 if Branch format

3: Rrd] « ir[imR2]; I sethi
GOTO 20.
4: R[15] « AND(pc, pc). ! call: save pc in register 15
5: temp0 « ADD(ir, ir). ! Shift disp30 field left
6: temp0 « ADD(ir, ir). ! Shift again
7: pc « ADD(pc, tenpO); GOTO 0. ! Junp to subroutine
| Get second source operand into tenpO for Arithmetic format
8: tenp0 « { SEXT13(ir) CONDI TI ONED ON ir[13] xNOR(ir[19:22]),

R[rs2] CONDI TI ONED ON ir[13] xNOR(i r[19:22]),

SIMML3(ir) CONDI TIONED ON ir[13] xOR(ir[19:22]),

R rs2] CONDI TIONED ON ir[13] xOR(ir[19:22])}.
! Decode op3 field for Arithnetic fornat

! Remai ni ng

9: Rrd] « {
ADDCC(R[ rs1], tenpO) CONDI TI ONED ON XNOR(I R[ 19: 24], 010000),
ANDCC(R[ rs1], tenpO) CONDI TI ONED ON XNOR(| R[ 19: 24], 010001),
ORCC(R[rs1], tenp0O) CONDI TI ONED ON XNOR(| R[ 19: 24], 010010),
NORCC(R{ rs1], tenpO) CONDI TI ONED ON XNOR(I R 19:24], 010110),
SRL(R[rs1], tenp0) CONDI TI ONED ON XNOR( | R[ 19: 24], 100110),
ADD(R[ rs1], tenp0O) CONDI TI ONED ON XNOR(| R[ 19: 24], 111000)};
GOTO 20.

I Get second source operand into tenpO for Menory format

10: tenp0 « {SEXT13(ir) CONDI TIONED ON ir[13],
R{rs2] CONDI TIONED ON ir[13]}.
11: tenp0 « ADD(R[rs1], tenp0).

! Decode op3 field for Menory format
GOTO {12 CONDI TI ONED ON i r[21],

13 CONDI TIONED ON ir[21]}.

«— AND(tenpO, tenp0O); Read « 1; GOTO 20.
«— RSHI FT5(ir).

12: R[rd]
13: ir

Figure 6-22 HDL description of the ARC control unit.

! addcc
! addcc

! Arithmetic instructions

addcc
andcc
orcc
orncc
srl

j npl

1 1d
I st

have to do additional decoding depending on the value of the op field. At line 4,
which is for the Call format, no additional decoding is necessary. The cal |
instruction is then implemented in statements 4-7, which are similar to the

microcoded version.

233
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14: ir « RSHFT5(ir).

15: ir « RSHIFT5(ir).

16: ir <« RSHFT5(ir).

17: ir  « RSH FT5(ir).

18: r0 « AND(tenmpO, R{rs2]); Wite « 1; GOTO 20.
19: pc « { ! Branch instructions

ADD(pc, tenmpO) CONDITIONED ON ir[28] + ir[28]xir[27] xZ +
ir[28] xir[27] xi r[26] xC + ir[28] xir[27] xi r[ 26] xi r[ 25] XN +
ir[28] xir[27] xir[26] xir[25] xV, B
I'NCPC(pc) CONDI TIONED ON ir[28] xir[27] xZ +
ir[28] xir[27] xi r[26] xC + ir[28] xir[27] xi r[26] xi r[ 25] xN +
i r[28] xi r[27] xi r[26] xi r[ 25] XV} ;
QOTO 0.
20: pc « INCPC(pc); GOrTo 0.
END SEQUENCE.
END ARC_CONTROL_UNI T.

Figure 6-22 (Continued.)

In statement 2, additional decoding is performed on the op2 field which is
checked to determine if the instruction is set hi or a branch. Since there are
only two possibilities, only one bit of op2 needs to be checked in line 2. Line 3
then implements set hi and line 19 implements the branch instructions.

Line 8 begins the Arithmetic format section of the code. Line 8 gets the second
source operand, which can be either immediate or direct, and can be sign
extended to 32 bits (for addcc) or not sign extended. Line 9 implements the
Arithmetic format instructions, conditioned on the op3 field. The XNOR func-
tion returns true if its arguments are equal, otherwise it returns false, which is
useful in making comparisons.

Line 10 begins the Memory format section of the code. Line 10 gets the second
source operand, which can either be a register or an immediate operand. Line 11
decodes the op3 field. Since the only Memory format instructions are | d and
st, only a single bit (I R[ 21] ) needs to be observed in the op3 field. Line 12
then implements the | d instruction, and lines 13-18 implement the st instruc-
tion. Finally, line 20 increments the program counter and transfers control back
to the first statement.

Now that the control sequence is defined, the next step is to design the logic for
the control section. Since there are 21 statements, there are 21 flip-flops in the
control section as shown in Figure 6-23. A control signal (CS;) is produced for
each of the 21 states, which is used in the data section of the hardwired control-
ler.
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Figure 6-23  The hardwired control section of the ARC: generation of the control signals.

In Figure 6-24, the data section of the hardwired controller generates the signals
that control the datapath. There are 27 OR gates that correspond to the 27 sig-
nals that control the datapath. (Refer to Figure 6-10. Count the 27 signals that
originate in the control section that terminate in the datapath.) The AMUX sig-
nal is set to 1 only in lines 9 and 11, which correspond to operations that place
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Figure 6-24 The hardwired control section of the ARC: signals from the data section of the control
unit to the datapath. (Shaded areas are not detailed.)

r s1 onto the A bus. Signals CSq and CS,; are thus logically ORd to produce
AMUX. Likewise, r d is placed on the C bus in lines 3, 9, and 12, and so CSs,
CSy, and CS;,, are logically OR'd to produce CMUX.

The BMUX signal is more complex. r s2 is placed on the B bus in lines 8, 10,
and 18, and so CSg, CS;(, and CSg are used to generate BMUX as shown.
However, in line 8, BMUX is set (indicating r s2 is placed on the B bus) only if

IR[13] =

0 and I R[ 19: 22] are all 0 (for the rightmost 4 bits of the 6-bit

op3 pattern for addcc: 010000.) The corresponding logic is shown for this case.
Likewise, in line 10, BMUX is set to 1 only when | R[ 13] = 0. Again, the cor-

responding logic is shown.

The Read signal is set in lines 10 and 12, and so CSy and CS;, are logically ORd
to produce Read. The Write signal is generated only in line 18, and thus needs

no logic other than the signal CSyg.
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There are 4 signals that control the ALU: ALU[O], ALU[1], ALU[2], and
ALUI3], which correspond to Fq, Fq, F,, and F, respectively, in the ALU opera-
tion table shown in Figure 9-4. These four signals need values in each of the 20
HDL lines. In line 0, the ALU operation is AND, which corresponds to
ALU[3:0] = 0101. Line 1 has no ALU operation specified, and so we can arbi-
trarily choose an ALU operation that has no side effects, like AND (0101). Con-
tinuing in this way, taking CONDI TI ONED ON statements into account, produces
the logic for ALU[3:0] as shown in the figure.

The control signals are sent to the datapath, similar to the way that the MIR con-
trols the datapath in the microprogrammed approach of Figure 6-10. The hard-
wired and microcontrolled approaches can thus be considered interchangeable,
except with varying costs. There are only 21 flip-flops in the hardwired approach,
but there are 2048x41 = 83,968 flip-flops in the microprogrammed approach
(although in actuality, a ROM would be used, which consumes less space because
smaller storage elements than flip/flops can be used.) The amount of additional
combinational logic is comparable. The hardwired approach is faster in executing
ARC instructions, especially in decoding the Branch format instructions, but is
more difficult to change once it is committed to fabrication.

EXAMPLE

Consider adding the same subcc instruction from the previous EXAMPLE to the
hardwired implementation of the ARC instruction set. As before, the subcc
instruction uses the Arithmetic format and an op3 field of 001100.

Only line 9 of the HDL code needs to be changed, by inserting the expression:

ADDCC (R[rsl1], INC 1(Tenp0)) CONDI TI ONED ON XNOR(IR[19:24], 001100), ! subcc

before the line for addcc.

The corresponding signals that need to be modified are ALU[ 3: 0] . The I NC_1
construct in the line above indicates that an adder CLU, which would be defined
in another HDL module, should be created (in a hardwired control unit, there is
a lot of flexibility on what can be done.) =

In this section we present a brief overview of VHDL (VHSIC Hardware
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Description Language, in which VHSIC is yet another acronym for Very High
Speed Integrated Circuit). Hardware description languages (HDLs), like VHDL
and AHPL, are languages used for describing computer hardware, focusing pri-
marily on logic devices and IC design. In the case of VHDL, however, designs
can be specified at many different levels. For example, the control unit imple-
mented in this chapter could be specified in VHDL.

We first cover the background that led to the development of VHDL, and then
describe some of its properties. We then take a look at a VHDL specification of
the majority function.

BACKGROUND

VHDL was the result of a collaboration between the Department of Defense
(DOD), and many US industries. DOD, primarily through its Defense
Advanced Research Products Agency (DARPA), realized in the late 1970’ that
IC design and fabrication was becoming so complex that a set of integrated
design tools was needed for both design and simulation. It was felt that the tools
should allow the user to specify a circuit or system from the highest, or behav-
ioral level down to the lowest levels of actual 1C layout and design, and further-
more, all of these specifications should be verifiable by simulators and other rule
checkers.

The first preliminary requirements definition for the language was issued by
DOD in 1981, as a recognition of the need for a more consistent approach to
computer hardware design. The contract for the first version of the language was
won by a consortium of IBM, Texas Instruments, and Intermetrics, a software
engineering firm specializing in programming language design and implementa-
tion.

The consortium released a preliminary version for testing and comment in 1985.
An updated version was submitted to the IEEE for standardization in 1986, the
result being named IEEE 1076-1987. In 1993, a newer version, IEEE
1076-1993, was approved that addressed a number of minor problems and
added several new features.

By almost any measure VHDL is a success, with many users both inside and out-
side the defense contractor community. DOD now requires that all Applica-
tion-Specific Integrated Circuits (ASICs) be accompanied by their VHDL model
for checking and simulation. Almost all CAD vendors now support VHDL in
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their toolsets.

WHAT ISVHDL?

In its most basic terms VHDL is a hardware description language that can be
used to describe and model digital systems. VHDL has an inherent sense of time,
and can manage the progression of events through time. Unlike most procedural
languages that are in common use, VHDL supports concurrent execution, and
is event driven.

Concurrent execution

Concurrent execution means that unless special efforts are taken to specify
sequential execution, all of the statements in a VHDL specification are executed
in parallel. This is the way it should be, since when power is applied to a digital
system the system runs “in parallel.” That is, current flows through circuits
according to the rules of physics and logic, without any inherent sense of “which
came first.”

Event-driven systems

VHDL deals with signals propagating through digital systems, and therefore log-
ically and naturally supports the concept of changes in state as a function of time.
Having a sense of time, it supports concepts such as “after,” “until,” and “wait.”
As an event-driven system, it begins execution by executing any initialization
code, and then records all changes in signal values, from 0 - 1 and 1 - 0, occur-
ring at the inputs and outputs of components. It records these changes, or events,
in a time-ordered queue, known as the event queue. It examines these events and
if an event has an effect upon some component, that effect is evaluated. If the
effect causes further events to take place the simulator likewise places these new
events in the event queue, and the process continues until and unless there are no
further events to process.

Levels of abstraction, and hierarchical decomposition

As mentioned above, VHDL specifications can be written at almost any level of
abstraction from the purely algorithmic level, where behavior is specified by for-
mal algorithms, to the logic level, where behavior is specified by Boolean expres-
sions.
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Furthermore, a VHDL specification may be composed of a hierarchy of compo-
nents, that is, components may contain components, which may themselves con-
tain components. This models the physical world, where, for example, a
motherboard may contain IC chips, which are composed of modules, which are
in turn composed of sub-modules, all the way down to individual logic gates,
and finally transistors.

AVHDL SPECIFICATION OF THE MAJORITY FUNCTION

Let us explore how VHDL can be used to implement a small digital component
by examining several implementations of the majority function, which pro-
duces a 1 at its output when more than half of its inputs are 1, otherwise it pro-
duces a 0 at its output. This is a useful function for fault tolerance, in which
multiple systems that perform the same operations on the same data set “vote,”
and if one of the systems deviates from the others, its output is effectively
ignored. The majority function is discussed in detail in Appendix A. Its truth
table is shown in Figure A-15 and Figure A-16, reproduced here as Figure 6-25.

Minteem| A B C F A s o

Index
olooo| o ?7?7 ABC
oo oY |1
21010 0 Majorit
s|o1 1 1 FL?[J10tiO¥1
4 1 00 0
5 1 0 1 1 |
6 110 1
7 111 1 F

a) b) c)

Figure 6-25 The majority function. a) truth table, b) AND-OR implementation, c) black box represen-
tation.

In VHDL the specification of any component such as the majority function is
split into two parts, an entity part and an architecture part. These correspond
roughly to the syntactic and semantic parts of a language specification: the entity
part describes the interface of the component without saying anything about its
internal structure. The architecture part describes the internal behavior of the
component. Here is an entity specification for the 3-input majority function:
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Interface specification for the majority component

-- Interface
entity MAORITY is
port
(AIN, BIN CIN: inBIT
F_our . out BIT);

end MAJORI TY;

Keywords are shown in bold, and comments begin with “- - ” and end at the end
of the line. Statements are separated by semicolons, “; ™.

The ent i ty specification describes just the “black box” input and output sig-
nals in Figure 6-25c. The port declaration describes the kind of signals going
into and out of the entity. Port modes include i n for signals that flow into the
entity, out for signals that flow out of the entity, and i nout for bidirectional
signals. There are also several other special purpose port modes.

With the interface to the majority component specified we can now model the
internal functioning of the component, using the ar chi t ect ur e specification:

Behavioral model for the majority component

-- Body
architecture LOG C SPEC of MAJORITY is
begi n
-- conpute the output using a Bool ean expression
F outr <= (not AINand BINand CIN or
(A IN and not B IN and CIN) or
(A INand B IN and not CIN) or
(AINand BINand CIN after 4 ns;
end LOd C_SPEC;

This model describes the relationship between the entity declaration of MAJOR-
I TY and the architecture of MAJORI TY. The names A IN, B IN, C.IN,
and F_QUT in the architecture model must match the names used in the entity
declaration.

This kind of architectural specification is referred to as a behavioral one, since it
defines the input/output function by specifying an explicit transfer function.
That function is a Boolean expression that implements the Boolean function
shown in Figure 6-25a,b. Notice, however, that even at this level of specification
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that we can include a time delay between inputs and outputs, using the af t er
keyword. In this case, the event computing the value of F_OUT will be triggered
4 ns after a change in any of the input values.

It is also possible to specify the architecture at a level closer to the hardware by
specifying logic gates instead of logic equations. This is referred to as a structural
model. Here is such a specification:

Structural model for the majority component

In generating a structural model for the MAJORITY entity we will follow the
gate design given in Figure 6-25b. We begin the model by describing a collection
of logic operators, in a special construct of VHDL known as a package. The
package is assumed to be stored in a working library called WORK. Following
the package specification we repeat the ent i t y declaration, and then, using the
package and entity declarations we specify the internal workings of the majority
component by specifying the architecture at a structural level:

-- Package declaration, in library WRK
package LOAC GATES i s
conmponent AND3

port (A B C: inBIT, X: out BIT);
end component;
conponent G4

port (A, BB C D: inBIT, X: out BIT);
end comnponent ;
conmponent NOr1

port (A: inBIT, X: out BIT);
end comnponent;

-- Interface
entity MUCRTY is
port )
(AIN BIN CIN inBT
F aJr :out BIT);

end MICRTY;

-- Body

-- UWses conponents decl ared i n package LOd C GATES
-- inthe WORK |ibrary

-- inmport all the conponents in WRK LO3d C GATES
use WIRK LOQ C GATES. al | )
architecture LOQ C SPEC of MMCRTY i s

-- declare signals used internally in MAJCRTY
signal ABAR BBAR CBAR 11, 12, 13, 14 BIT;
begi n

-- connect the |ogic gates

NOT 1 : NOTL port map (AIN ABAR:
NOT 2 : NOTL port map (BIN B BAR:
NOT 3 : NOTL port naep (CIN CBAR:
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AND 1 : ANDB port map (ABAR BIN CIN I1);
AND 2 : ANDB port map (AIN BBAR CIN 12);
AND 3 : ANDB port map (AIN BIN CBAR 13);
AND 4 : ANDB port map (AIN BIN CIN 14);
RI: cRBport map (11, 12, 13, 14, F.QUT);

end LOd C SPEC

The package declaration supplies three gates, a 3-input AND gate, AND3, a
4-input OR gate, OR4, and a NOT gate, NOT1. The architectures of these
gates are assumed to be declared elsewhere in the package. The ent i t y declara-
tion is unchanged, as we would expect, since it specifies MAJORITY as a “black
box.”

The body specification begins with a use clause, which imports al | of the dec-
larations in the LOGIC_GATES package within the WORK library. The si g-
nal declaration declares seven BIT signals that will be used internally. These
signals are used to interconnect the components within the architecture.

The instantiations of the three NOT gates follow, NOT_1, NOT_2, and
NOT _3, all of which are NOT1 gates, and the mapping of their input and out-
put signals are specified, following the port map keywords. Signals at the
inputs and outputs of the logic gates are mapped according to the order in which
they were declared within the package.

The rest of the body specification connects the NOT gates, the AND gates, and
the OR gate together as shown in Figure 6-25b.

Notice that this form of architecture specification separates the design and imple-
mentation of the logic gates from the design of the MAJORITY entity. It would
be possible to have several different implementations of the logic gates in differ-
ent packages, and to use any one of them by merely changing the uses clause.

9-VALUE LOGIC SYSTEM

This brief treatment of VHDL only gives a small taste of the scope and power of
the language. The full language contains capabilities to specify clock signals and
various timing mechanisms, sequential processes, and several different kinds of
signals. There is an IEEE standard 9-value logic system, known as
STD_ULOGIC, IEEE 1164-1993. It has the following logic values:

type STD ULOGA Cis (
‘U, -- Uninitialized
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X, -- Forci ng unknown
‘o, -- Forcing O

1, -- Forcing 1

VA -- High inpedance
‘W, -- Weak unknown
‘L, -- Wak 0

‘H, -- Weak 1

-, -- Don't care

Without getting into too much detail, these values allow the user to detect logic
flaws within a design, and to follow the propagation of uninitialized or weak sig-
nals through the design.

m SUMMARY

A microarchitecture consists of a datapath and a control section. The datapath
contains data registers, an ALU, and the connections among them. The control
section contains registers for microinstructions (for a microprogramming
approach) and for condition codes, and a controller. The controller can be micro-
programmed or hardwired. A microprogrammed controller interprets microin-
structions by executing a microprogram that is stored in a control store. A
hardwired controller is organized as a collection of flip-flops that maintain state
information, and combinational logic that implements transitions among the
states.

The hardwired approach is fast, and consumes a small amount of hardware in
comparison with the microprogrammed approach. The microprogrammed
approach is flexible, and simplifies the process of modifying the instruction set. The
control store consumes a significant amount of hardware, which can be reduced to
a degree through the use of nanoprogramming. Nanoprogramming adds delay to
the microinstruction execution time. The choice of microprogrammed or hard-
wired control thus involves trade-offs: the microprogrammed approach is large
and slow, but is flexible and lends itself to simple implementations, whereas the
hardwired approach is small and fast, but is difficult to modify, and typically
results in more complicated implementations.
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m PROBLEMS

Design a 1-bit arithmetic logic unit (ALU) using the circuit shown in Fig-
ure 6-26 that performs bitwise addition, AND, OR, and NOT on the 1-bit
inputs A and B. A 1-bit output Z is produced for each operation, and a carry
is also produced for the case of addition. The carry is zero for AND, OR, and
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) > [ O
3104 Decocer — >~

Output
— Z

¥

00—
Function Fo ~T7] 01—
Select Fy —7 10— D
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Carry
X Y I Out
paa A T ll£ Carry In
IanJtSB i p— Eull Fo, F1 | Function
Adder
Carry 00 ADD(A,B)
In CarryOut’ ‘ Sum 0 1 | AND(AB)
1 0 | OR(A,B)
11 NOT(A)

Figure 6-26 A one-bit ALU.

NOT. Design the 1-bit ALU using the components shown in the diagram.
Just draw the connections among the components. Do not add any logic
gates, MUXes, or anything else. Note: The Full Adder takes two one-bit
inputs (X and Y) and a Carry In, and produces a Sum and a Carry Out.

Design an ALU that takes two 8-bit operands X and Y and produces an
8-bit output Z. There is also a two-bit control input C in which 00 selects log-
ical AND, 01 selects OR, 10 selects NOR, and 11 selects XOR. In designing
your ALU, follow this procedure: (1) draw a block diagram of eight 1-bit
ALUs that each accept a single bit from X and Y and both control bits, and
produce the corresponding single-bit output for Z; (2) create a truth table that
describes a 1-bit ALU; (3) design one of the 1-bit ALUs using an 8-to-1
MUX.

Design a control unit for a simple hand-held video game in which a char-
acter on the display catches objects. Treat this as an FSM problem, in which
you only show the state transition diagram. Do not show a circuit. The input
to the control unit is a two-bit vector in which 00 means “Move Left,” 01
means “Move Right,” 10 means “Do Not Move,” and 11 means “Halt.” The
output Z is 11 if the machine is halted, and is 00, 01, or 10 otherwise, corre-
sponding to the input patterns. Once the machine is halted, it must remain in
the halted state indefinitely.
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In Figure 6-3, there is no line from the output of the C Decoder to % O.

Why is this the case?

Refer to diagram Figure 6-27. Registers 0, 1, and 2 are general purpose

Output Enables
A-bus  B-bus

1 1

0123 0123

AR 11IEGS

Scratchpad

(Four 16-hit
registers)

vy

FoF1 | Function

0 0 | ADD(A, B)
0 1 | AND(A, B)

A F
K 1

—_—
—_—
—_—

B-bus

Figure 6-27 A small microarchitecture.

registers. Register 3 is initialized to the value +1, which can be changed by the
microcode, but you must make certain that it does not get changed.

a) Write a control sequence that forms the two’s complement difference of the
contents of registers 0 and 1, leaving the result in register 0. Symbolically, this
might be written as: rO0 — r0 —rl. Do not change any registers except r0 and
r1 (if needed). Fill in the table shown below with 0’s or 1’s (use 0’'s when the
choice of 0 or 1 does not matter) as appropriate. Assume that when no regis-
ters are selected for the A-bus or the B-bus, that the bus takes on a value of 0.

WriteEnables | A
01 2 3|0

-busenables | B-busenables

1 2 3|01 2 3|F0oF1

Time

0

1

2
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b) Write a control sequence that forms the exclusive-OR of the contents of
registers 0 and 1, leaving the result in register 0. Symbolically, this might be
written as: r0 — XOR(r0, r1). Use the same style of solution as for part (a).

Write the binary form for the microinstructions shown below. Use the
style shown in Figure 6-17. Use the value 0 for any fields that are not needed.

60: R[tenp0] — NOR(R[0],R[tenp0]); IF Z THEN GOTO 64;
61: Rrd] < INC(Rrsl1]);

Three binary words are shown below, each of which can be interpreted as
a microinstruction. Write the mnemonic version of the binary words using the
micro-assembly language introduced in this chapter.
C
M

A B
M M
U U URW
A X B X C XDR ALU COND JUMP ADDR
0 0
1 0
1 1

10010100000000100001/0/0/0j1100/000[00000000000
000000j1/2100001|0j100001/0[0[0j1000/2110/11100000001
000000/1000000}112100001/0[0]0j1000[101]211100010010

Rewrite the microcode for the cal | instruction starting at line 1280 so
that only 3 lines of microcode are used instead of 4. Use the LSHIFT?2 opera-
tion once instead of using ADD twice.

(@) How many microinstructions are executed in interpreting the subcc
instruction that was introduced in the first Example section? Write the num-
bers of the microinstructions in the order they are executed, starting with
microinstruction 0.

(b) Using the hardwired approach for the ARC microcontroller, how many
states are visited in interpreting the addcc instruction? Write the states in the
order they are executed, starting with state 0.

(@) List the microinstructions that are executed in interpreting the ba
instruction.

(b) List the states (Figure 6-22) that are visited in interpreting the ba instruc-
tion.
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Register % 0 can be designed using only tri-state buffers. Show this
design.

What bit pattern should be placed in the C field of a microword if none of
the registers are to be changed?

A control unit for a machine tool is shown in Figure 6-28. You are to cre-

Address ROM Contents
ABCD
0000

A B C D 0001
¢ ¢ i{ 0010

\ 0011
Halt 0100
0101
Microstore ROM 0110

0111
1000

Clock * 1ool
1010

Register 1011

<

Wating Bell Halted 1100

¢ ¢ ¢ 1101

Vv W X s 1110
1111

V W X S
Figure 6-28 Control unit for a machine tool.

ate the microcode for this machine. The behavior of the machine is as follows:
If the Halt input A is ever set to 1, then the output of the machine stays halted
forever and outputs a perpetual 1 on the X line, and 0 on the V and W lines. A
waiting light (output V) is enabled (set to 1) when no inputs are enabled. That
is, Vis lit when the A, B, and C inputs are 0, and the machine is not halted. A
bell is sounded (W=1) on every input event (B=1 and/or C=1) except when
the machine is halted. Input D and output S can be used for state information
for your microcode. Use 0s for any fields that do not matter. Hint: Fill in the
lower half of the table first.
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For this problem, you are to extend the ARC instruction set to include a
new instruction by modifying the microprogram. The new ARC instruction
to be microcoded is:

xor cc — Perform an exclusive OR on the operands, and set the condition
codes accordingly. This is an Arithmetic format instruction. The op3 field is
010011.

Show the new microinstructions that will be added for xor cc.

Show a design for a four-word register stack, using 32-bit registers of the
form shown below:

Dataln

isz

Read —>
Write —> 32-Bit Register
Clock —>
32
Data Out

Four registers are stacked so that the output of the top register is the input to
the second register, which outputs to the input of the third, which outputs to
the input of the fourth. The input to the stack goes into the top register, and
the output of the stack is taken from the output of the top register (not the
bottom register). There are two additional control lines, push and pop,
which cause data to be pushed onto the stack or popped off the stack, respec-
tively, when the corresponding line is 1. If neither line is 1, or if both lines are
1, then the stack is unchanged.

In line 1792 of the ARC microprogram, the conditional GOTO appears at
the end of the line, but in line 8 it appears at the beginning. Does the position
of the GOTOwithin a micro-assembly line matter?

A microarchitecture is shown in Figure 6-29. The datapath has four regis-
ters and an ALU. The control section is a finite state machine, in which there
is a RAM and a register. For this microarchitecture, a compiler translates a
high level program directly into microcode; there is no intermediate assembly



DATAPATH AND CONTROL 251

CHAPTER 6

TTT T TTTTT rTrrrrrrorT T L L 1T T A<V|_|OZ H H ﬂ_ﬂmwm
€ (@'v)do |0 T SAIIBaN U0 SsaIpp Y duwing 8sn T
N I I | | N T I | 1 1 1 1 111 111 1 ‘
TrTT T TTTTT TrTT T T TTTT T T TTT T T ﬁm <VDZ< ._” o w__\gw_
z (@'v)aav| 0 o oRZuossaIppy dwncasn| 0 T
) N T T | | N Y T N T | 1 111 111 1 11 1 ﬁ\_UUJ«QEDH,%D H O
TT T T T T T T T [T T T T T T T T T [T [T T T[T T T [T T T T uonoun4 on_ﬂn_ wmwk_bb,c\uwameOO
T
TN N N T S T T R T A A S niv o~ T
TrTT T TTTTT TrTT T T TTTT T T TTT T T ﬁ‘_UU< CO_H_UCOO U O
0 < AVY puod
) N T T | | N Y T N T | 1 111 111 1 11 1
Ssaippy DeN  sseippydwnr | sng-O sng-g sng-v NIV SeulTeIeud 9
puod ssuliajqeus g
seul7a|qeus v
I79|ge! ndino
v v v »
L o1 <z T
01 ! YVYN
T TTT T T TT T T TT TTTT % UN__ T u_ ~.|.__ UN__ N__ b
To| T Tyl T Ty Tt e o
| T T N Y I | | N N T T | 1 111 111 111 1

SSOIPPY XN  SSaIppy QEJH.\

\ | sng-O sng-gsng-v NV
puoY

=

9€ 1
SHQ 9€ x
ANV
Oy—by Oly—6ly 02y T2y 2y €y  g)qssaIppy
A A A A

N\

sng-g sng-v

s11q (0J9z) z pue (eAlrebau) u

)

induy

T

sng-o

Figure 6-29  An example microarchitecture.

language form, and so there are no instruction fetch or decode cycles.
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For this problem, you are to write the microcode that implements the instruc-
tions listed below. The microcode should be stored in locations 0, 1, 2, and 3
of the RAM. Although there are no lines that show it, assume that the n and z
bits are both 0 when CyC, = 00. That is, Ay3 and Ay, are both 0 when there is
no possible jump. Note: Each bit of the A, B, and C fields corresponds
directly to a register. Thus, the pattern 1000 selects register R3, not register 8,
which does not exist. There are some complexities with respect to how
branches are made in this microarchitecture, but you do not need to be con-
cerned with how this is done in order to generate the microcode.

Rl ~ ADD(R2, R3)

Jurmp if negative to (15)4g
R3 <« AND(R1l, R2)

Jurmp to (20) 49

In line 2047 of the ARC microprogram shown in Figure 6-15, would the
program behave differently if the “GOTO 0” portion of the instruction is
deleted?

In horizontal microprogramming, the microwords are wide, whereas in
vertical microprogramming the words are narrow. In general, horizontal
microwords can be executed quickly, but require more space than vertical
microwords, which take more time to execute. If we make the microword for-
mat shown in Figure 6-11 more horizontal by expanding the A, B, and C
fields to contain a single bit for each of the 38 registers instead of a coded
six-bit version, then we can eliminate the A, B, and C decoders shown in Fig-
ure 6-3. This allows the clock frequency to be increased, but also increases the
space for the microstore.

(@) How wide will the new horizontal microword be?
(b) By what percentage will the microstore increase in size?

Refer to Figure 6-7. Show the ALU LUTg and ALU LUT, (x > 0) entries
for the INC(A) operation.

On some architectures, there is special hardware that updates the PC,
which takes into account the fact that the rightmost two bits are always 0.
There is no special hardware presented in this chapter for updating the PC,
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and the branch microcode in lines 2 - 20 of Figure 6-15 has an error in how
the PC is updated on line 12 because branch displacements are given in terms
of words. Identify the error, and explain how to fix it.
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MEMORY

In the past few decades, CPU processing speed as measured by the number of
instructions executed per second has doubled every 18 months, for the same
price. Computer memory has experienced a similar increase along a different
dimension, quadrupling in size every 36 months, for the same price. Memory
speed, however, has only increased at a rate of less than 10% per year. Thus,
while processing speed increases at the same rate that memory size increases, the
gap between the speed of the processor and the speed of memory also increases.

As the gap between processor and memory speeds grows, architectural solutions
help bridge the gap. A typical computer contains several types of memory, rang-
ing from fast, expensive internal registers (see Appendix A), to slow, inexpensive
removable disks. The interplay between these different types of memory is
exploited so that a computer behaves as if it has a single, large, fast memory,
when in fact it contains a range of memory types that operate in a highly coordi-
nated fashion. We begin the chapter with a high-level discussion of how these
different memories are organized, in what is referred to as the memory hierarchy.

Memory in a conventional digital computer is organized in a hierarchy as illus-
trated in Figure 7-1. At the top of the hierarchy are registers that are matched in
speed to the CPU, but tend to be large and consume a significant amount of
power. There are normally only a small number of registers in a processor, on the
order of a few hundred or less. At the bottom of the hierarchy are secondary and
off-line storage memories such as hard magnetic disks and magnetic tapes, in
which the cost per stored bit is small in terms of money and electrical power, but
the access time is very long when compared with registers. Between the registers
and secondary storage are a number of other forms of memory that bridge the
gap between the two.
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Fast and expensive

Increasing
Registers performance and
increasing cost

Cache

Main memory
Secondary storage (disks)

Off-line storage (tape)

Slow and inexpensive

Figure 7-1  The memory hierarchy.

As we move up through the hierarchy, greater performance is realized, at a greater
cost. Table 7- 1shows some of the properties of the components of the memory

Memory Type | Access Time | Cost/MB | Typical | Typical Cost
Amount
Used

Registers 1ns High 1KB -

Cache 5-20 ns $100 1MB $100

Main memory | 60-80ns $1.10 64 MB | $70

Disk memory | 10 ms $0.05 4GB $200

Table 7- 1 Properties of the memory hierarchy

hierarchy in the late 1990’. Notice that Typical Cost, arrived at by multiplying
Cost/MB x Typical Amount Used (in which “MB” is a unit of megabytes), is
approximately the same for each member of the hierarchy. Notice also that access
times vary by approximately factors of 10 except for disks, which have access
times 100,000 times slower than main memory. This large mismatch has an
important influence on how the operating system handles the movement of
blocks of data between disks and main memory, as we will see later in the chap-
ter.
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In this section, we look at the structure and function of random access memory
(RAM). In this context the term “random” means that any memory location can
be accessed in the same amount of time, regardless of its position in the memory.

Figure 7-2 shows the functional behavior of a RAM cell used in a typical com-

Read

Select

Figure 7-2  Functional behavior of a RAM cell.

puter. The figure represents the memory element as a D flip-flop, with additional
controls to allow the cell to be selected, read, and written. There is a (bidirec-
tional) data line for data input and output. We will use cells similar to the one
shown in the figure when we discuss RAM chips. Note that this illustration does
not necessarily represent the actual physica